

A Simple Data Logging System for Ballistic Applications

by Thomas Kottke

ARL-TR-3853 July 2006

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless
so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the
use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5066

ARL-TR-3853 July 2006

A Simple Data Logging System for Ballistic Applications

Thomas Kottke
Weapons and Materials Research Directorate, ARL

Approved for public release; distribution is unlimited.

 ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

July 2006
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

1 October 2005–31 March 2006
5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

A Simple Data Logging System for Ballistic Applications

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

AH80
5e. TASK NUMBER

6. AUTHOR(S)

Thomas Kottke

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: AMSRD-ARL-WM-TE
Aberdeen Proving Ground, MD 21005-5066

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TR-3853

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

An economical and robust data logger is presented that is well suited to ballistic environments. This ballistic data recorder
acquires two channels of analog data over a 0- to 5-V range, with acquisition times as short as 2.3 µs and record lengths as large
as 0.5 MB per channel. The microcontroller-based architecture allows many data acquisition parameters such as rate, mode,
triggering method, and record length to be selected and varied by the user. Onboard batteries and charging circuitry further
enhance the data logger’s applicability and flexibility.

Complete details of the ballistic data logger’s hardware and software are presented in this report. A description of the hardware
begins with a broad overview of the ballistic data logger’s capabilities and method of operation and increases in complexity to
provide complete electronic schematics, fabrication methods, and component procurement information. A complete listing of
data logger software is provided with extensive documentation. The ballistic data logger’s performance is verified with an
example of acquired data.

15. SUBJECT TERMS

data, logger, recorder, ballistic

16. SECURITY CLASSIFICATION OF:
19a. NAME OF RESPONSIBLE PERSON
Thomas Kottke

a. REPORT
UNCLASSIFIED

b. ABSTRACT
UNCLASSIFIED

c. THIS PAGE
UNCLASSIFIED

17. LIMITATION
OF ABSTRACT

UL

18. NUMBER
OF PAGES

70

19b. TELEPHONE NUMBER (Include area code)
410-278-2557

 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

 iii

Contents

List of Figures iv

List of Tables iv

Acknowledgments v

1. Introduction 1

2. Ballistic Data Logger Embodiment 1
2.1 Overview ...1

2.2 Electronic Circuitry ...2

2.3 Electronics Fabrication..9

3. Ballistic Data Logger Software 17

4. Ballistic Data Logger Test and Evaluation 18

5. References 21

Appendix A. Listing of Ballistic Data Logger Microcontroller C Code 23

Appendix B. Listing of Ballistic Data Logger Microcontroller Assembly Code 31

Appendix C. Listing of Ballistic Data Logger Microcontroller Assembler Header File 51

Appendix D. Ballistic Data Logger Microcontroller Linker Script File 57

Distribution List 60

 iv

List of Figures

Figure 1. Photographs of top (left) and bottom (right) of ballistic data logger PCB......................3
Figure 2. Block diagram of ballistic data logger hardware...4
Figure 3. Schematic diagram of ballistic data logger hardware..5
Figure 4. Design of the top or first layer of the ballistic data logger printed circuit board.10
Figure 5. Design of the second layer of the ballistic data logger printed circuit board.11
Figure 6. Design of the third layer of the ballistic data logger printed circuit board....................12
Figure 7. Design of the bottom or fourth layer of the ballistic data logger printed circuit

board. ...13
Figure 8. Transparent view of data logger PCB showing connections between all four layers. ..14
Figure 9. Placement of components on top side of ballistic data logger PCB..............................16
Figure 10. Placement of components on bottom side of ballistic data logger PCB......................16
Figure 11. Ballistic data logger in protective packaging. ...17
Figure 12. Acquired sinusoidal test data...19
Figure 13. Analysis of acquired sinusoidal test data...20

List of Tables

Table 1. Ballistic data logger total recording times for a variety of data acquisition times.2
Table 2. Ballistic data logger capabilities and characteristics. ...3
Table 3. Procurement information for components used in the ballistic data logger.15

 v

Acknowledgments

The author would like to thank R. Brian Leavy of the Armor Mechanics Branch for providing
seminal funding for this project; J. Wayne Gardiner, retired, and Robert M. Reinsel of the
Materials Application Branch for assistance with waterjet fabrication technology; Keith A.
Mahan of the Survivability Concepts Branch for machining assistance; Jeffrey L. Cameron of the
Survivability Concepts Branch for electronic fabrication assistance; and Sarah W. Kennedy,
Barbara E. Ringers, Peter T. Bartkowski, and James Tardif for reviewing and improving the final
manuscript.

 vi

INTENTIONALLY LEFT BLANK.

 1

1. Introduction

The Survivability Concepts Branch of the Terminal Effects Division of the Weapons and
Materials Research Directorate, U.S. Army Research Laboratory, has developed an economical
and robust data logger for ballistic applications. This apparatus was originally designed to
record in-flight signals from infrared proximity sensors. However, the data logger’s
microcontroller-based architecture allows it to be reprogrammed to function in a wide variety of
applications and is therefore useful to the ballistics community in general.

This report presents a complete description of both the hardware and software that were
developed for the ballistic data logger. First, the capabilities of the data logger are presented
along with an outline of the method of operation. The hardware is then reviewed in detail
including electronic schematics, fabrication methods, and component procurement information.
All the code that drives the data logger microcontroller is discussed and listed with embedded
comments. Finally, an example is presented of data that have been collected by the ballistic data
logger to verify its performance.

2. Ballistic Data Logger Embodiment

2.1 Overview

This section presents a broad overview of the ballistic data logger hardware. Specifically, the
data logger’s capabilities are enumerated to allow prospective users the opportunity to decide if
this device can satisfy their requirements. Its method of operation is also presented at a level that
allows the user to apply the data logger in an effective manner. Subsequent sections delve into
the full-blown gory electronic details for readers who may need to modify or reproduce this
hardware.

This ballistic data logger is a highly portable, microcontroller-based, 2 channel, 8-bit data
acquisition system that can measure signals over a 0- to 5-V range yielding a measurement
resolution of less than 20 mV. The data acquisition time for two-channel operation can be as
short as 2.3 µs. This means that a voltage measurement can be recorded on both channels every
2.3 µs. Each channel has 0.5 MB of storage memory. Thus, for the 2.3-µs minimum data
acquisition period a total recording time in excess of 1.2 s is available. Since the ballistic data
logger’s operation is controlled by an onboard microcontroller, the data acquisition time can be
set by the user to any value greater than or equal to 2.3 µs. Table 1 presents a range of data
acquisition times and the corresponding total recording times. This table highlights the data
logger’s ability to also serve as a long-term monitoring device for scenarios that require modest
data acquisition rates.

 2

Table 1. Ballistic data logger total recording times for a variety of data acquisition times.

Data Acquisition Time Total Recording Time Data Acquisition Time Total Recording Time
2.3 µs 1.21 s 10 ms 87.4 min
10 µs 5.24 s 100 ms 14.6 hr

100 µs 52.4 s 1 s 6.07 day
1 ms 8.74 min 10 s 60.7 day

In addition to the data acquisition rate, the microcontroller-based architecture of the ballistic data
logger allows many other data acquisition parameters to be selected and varied by the user.
Similar to the operation of an oscilloscope, the data acquisition mode can be chosen to be single-
sweep or retriggered. Data initiation can be triggered by detection of an input signal above a
preset threshold level or by detection of a digital synchronization pulse. The length of the data
record can be reduced for shorter events or expanded to fill 1 MB of memory for single-channel
operation. Indeed, the ballistic data logger’s flexibility is primarily limited by the ingenuity and
expertise of the microcontroller’s programmer.

Once data has been recorded, it is transferred from the ballistic data logger to a personal
computer (PC) through a standard RS232 serial port connection. The baud rate and other details
of this serial port connection are again chosen by the user and programmed into the onboard
microcontroller.

The ballistic data logger is powered by onboard batteries to enhance its ease of use, flexibility,
and robustness. As presented, these batteries provide for more than 2 hr of data recording
operation and more than 1 day of data memory retention. All the required battery charging
circuitry is contained in the data logger hardware. Therefore, a simple external power supply can
be used to recharge the batteries or power the data logger for applications where the required run
time exceeds the battery lifetime. The data logger can be remotely activated using an internal
electronic switch.

A single 3.8-in-diameter printed circuit board (PCB) is used to fabricate the ballistic data logger.
The total thickness of the completed assembly is about 3/4 in; the mass is 60 g. Four mounting
holes are provided that are sized for 6–32 screws and four pass holes are available to allow wires to
be threaded through the data logger. A picture of the ballistic data logger is presented in figure 1.
The data logger’s capabilities and characteristics are summarized in table 2.

2.2 Electronic Circuitry

A block diagram of the ballistic data logger’s major components and the interconnections
between them is displayed in figure 2. Figure 3 illustrates a more detailed schematic diagram of
the data logger’s circuitry. In the following discussion, references to details of this schematic
diagram are italicized for the reader’s convenience.

 3

Figure 1. Photographs of top (left) and bottom (right) of ballistic data logger PCB.

Table 2. Ballistic data logger capabilities and characteristics.

Parameter Value
Number of channels 2

Voltage measurement range 0 to 5 V
Number of data bits 8

Voltage measurement resolution <20 mV
Memory per channel 0.5 MB

Acquisition mode Single-sweep or retrigger
Triggering mode Threshold or synch pulse

Data acquisition battery life >2 hr
Memory retention battery life >1 day

Activation control Remote electronic switch
Diameter 3.8 in
Thickness <3/4 in

Weight 60 g

The data logger is powered by onboard lithium polymer (LiPO) batteries. This family of
rechargeable batteries provides high-power density, extended shelf life, and the potential for
hundreds of recharging cycles with minimal degradation in cell capacity and voltage. However,
these batteries must be recharged in a very specific manner in order to satisfy safety
requirements (1). Specifically, the charging voltage must be limited to 4.2 V per battery cell in a
series configuration and the charging current in amperes should be limited to the cell’s capacity

 4

Memory 2
+M

LiPO
Batteries

Microcontroller

Charging
Circuitry

Electronic
ON/OFF
Switch

Voltage
Regulator

Voltage
Regulator

Voltage
Regulator

+M Memory Power

+V Digital Power

+A Analog Power

Xstal+V

Address
Generator

40
MHz Reset 7 LSB

+V

Memory 1
+M+V

19 Bit Address Bus

3 Control Lines

Analog to
Digital

Converter+A

Input 1

Input 2

3 Control Lines

Analog to
Digital

Converter+A

Input 1

Input 2

4
C

on
tro

l L
in

es

8 Bit Data Bus

Serial
Port

Driver+V

2 Com. Lines
TX

RX

GND

External
PC

Power Signals DataAddress

Figure 2. Block diagram of ballistic data logger hardware.

value in A·hr. Four Kokam KOK145T LiPO cells are used in each data logger.* These cells are
configured as two parallel banks with each bank containing two cells in series. Therefore, the
maximum charging voltage must be limited to 8.4 V. Each cell has a capacity value of 0.145 A·hr.
When the two parallel battery banks are charged, only half the charging current will pass through
each bank. Therefore, the total charging current should be limited to a maximum value of
0.290 A.

*FMA Direct, 5716A Industry Lane, Frederick, MD 21704, 800-343-2934, http://www.fmadirect.com.

5

Fi
gu

re
 3

.
Sc

he
m

at
ic

 d
ia

gr
am

 o
f b

al
lis

tic
 d

at
a

lo
gg

er
 h

ar
dw

ar
e.

 6

INTENTIONALLY LEFT BLANK.

 7

Conveniently, the popularity of LiPO cells as a power source for cell phones has spawned the
development of electronic components that are specifically designed to charge these cells in a
safe and efficient manner. The ballistic data logger incorporates a National Semiconductor
LM3622M-8.4 lithium-ion battery charger controller to perform this function (2). This integrated
circuit and the associated components that make up the charging circuitry are displayed in the
top left section of figure 3. With this charging circuitry any 12- to 24-V, 0.5-A power supply can
be used to charge the onboard LiPO battery pack to a maximum voltage of 8.4 V at a
conservative current of 0.2 A in less than 2 hr. If this charging circuitry should fail, the LiPO
battery pack can be charged manually using a voltage- and current-regulated power supply
through the provided battery access terminals.

The energy from the LiPO battery pack is conditioned by three separate uA78M05 positive-
voltage regulators (3) to power the memory, digital, and analog portions of the ballistic data
logger circuitry. Volatile memory is utilized in this data logger. This means the memory
components must remain powered in order for stored data to be retained. Thus, the output from
the LiPO battery pack, +B, is hardwired to the input of memory voltage regulator VR2 when the
data logger is operational. The regulated +5 V potential that VR2 generates powers the memory
components and is designated +M. For the digital and analog portions of the circuitry an
electronic switch is provided that can be used to remotely turn these portions of the data logger
on and off. As illustrated in the upper-right portion of figure 3, a 5-V control signal can turn on
this electronic switch to pass the +B battery voltage through to the inputs of voltage regulators
VR1 and VR3 as +P. If this electronic switch becomes nonfunctional, then these voltage
regulators can be powered externally through the +P and GND access terminals. The output
from voltage regulator VR1 that powers the digital circuitry is designated +V and the output from
voltage regulator VR3 that powers the analog circuitry is designated +A. The analog and digital
portions of the circuitry are provided with their own voltage regulators to isolate the noise
sensitive analog components from the undesirable voltage spikes that are common on digital
power lines. All the digital components include 0.1-µF bypass capacitors on their power lines to
further mitigate these power spikes.

A PIC18F458 high-performance enhanced FLASH microcontroller (4) is used to direct and
coordinate the actions of the various components that make up the ballistic data logger. These
actions include the initiation of the data acquisition process, the analog to digital conversion
process, the storage of converted data, and the eventual transfer of acquired data. Each of these
processes will now be considered in detail highlighting the components that are involved and
how they are coordinated by the microcontroller.

Two methods are considered for initiating the data acquisition process. The first method
involves the application of an external synchronization pulse. In this scheme the data acquisition
code in the microcontroller is included in a high-priority interrupt routine. When triggered by
the application of a suitable external trigger signal to the RB0/INT0 line of the microcontroller,
the interrupt data acquisition routine is run to completion before control is returned to the code

 8

that was being executed prior to the interrupt. A second method for initiating the data
acquisition process is to trigger when a particular input voltage exceeds some user-defined
threshold value. In this scheme the data acquisition code begins with a free-running loop that
repeatedly reads an applied analog voltage value and compares it to the specified threshold level.
This free-running loop is repeated as long as the input value does not exceed the threshold value.
Once the threshold value is exceeded the code branches out of the loop and the remainder of the
data acquisition code is executed.

Analog input signals are digitized for subsequent storage by an ADC08062 two-channel analog-
to-digital converter (ADC) with internal sample and hold (5). This multiplexed ADC passes
signals from either of the two analog inputs to a common digitizing unit that assures uniform
digitization for both input channels. The PIC18F458 microcontroller controls the operation of
the ADC08062 by manipulating four of its control lines. The CS bar chip select line is pulled
low to activate the ADC for operation. A low signal to line A0 selects analog input 1 for
digitization while a high signal to A0 selects analog input 2. Digital conversions are initiated by
a falling signal on line WR bar and the digitized data is output from the ADC DB# data lines to
the data bus by a low signal on RD bar.

The digitized data is stored in two CY62148B 512K word by 8-bit static random access memory
(RAM) integrated circuits (6). Three control lines are used by the microcontroller to regulate the
operation of each memory chip. A CE bar chip enable line is pulled low to select a memory chip
for operation. Data is written to the memory chip by pulling the CE bar and the WE bar write
enable lines low. Conversely, data is read from the memory chip by pulling the CE bar and the
OE bar output enable lines low while forcing WE bar high. Read and write operations act on the
memory location specified by the 19 address lines A0–A18. The seven lowest significance
address bits, A0–A6, are generated by the microcontroller’s port A digital output lines, RA0–RA6.
A CD74HCT4040 high-speed 12-stage binary counter (7) is used to generate the remaining
address bits. The microcontroller resets this binary counter by momentarily pulling its MR
master reset line high and the microcontroller clocks the counter’s CP clock pulse line with the
signal from address output line RA6. In essence, the binary counter’s output lines are cascaded
to the output from the microcontroller’s port A lines to generate the complete memory chip
address.

At this point, a couple of features about the microcontroller and the memory chips need to be
highlighted. All of the microcontroller’s port A lines, which are used to generate the seven
lowest significance address bits, are transistor-transistor-logic (TTL) outputs, except for line
RA4, which is configured as an open drain output. Therefore, in order to function as a TTL type
output a 4.7-kΩ pull-up resistor, R11, is added to line RA4. The memory chips have an
automatic power-down feature that can reduce power consumption by more than 99%. This
feature is activated by deselecting the memory chip with a high level to the CE bar line. Pull up
resistors R8 and R9 are attached to the CE bar lines of the memory chips to insure that this
power saving feature is activated when the microcontroller is powered down.

 9

After the data acquisition process is completed, data are continuously output through an onboard
serial port that can be connected to an external PC for long-term data storage and analysis.
Conveniently, the PIC18F458 microcontroller includes a universal synchronous/asynchronous
receiver/transmitter (USART) that provides the foundation for the serial port capability.
However, this onboard USART transmits and receives TTL level signals that are not directly
compatible with the RS232 serial port protocol (8). The proper RS232 signal levels are obtained
by passing the microcontroller’s USART signals through a MAX3232 transceiver driver (9).
This serial port driver and the associated circuitry are illustrated in the top middle portion of
figure 3.

2.3 Electronics Fabrication

The ballistic data logger is assembled on a single four-layer PCB. Figures 4–7 individually
display the design of the PCB’s four layers. Figure 8 shows a combination of all four PCB
layers with the ground planes and screen printing omitted to highlight the interconnections
between layers. Surface mount devices (SMDs) are utilized in this device. These components
are available from Digi-Key Corporation* and are listed in table 3 along with procurement
information. The placement of the various SMD components on the data logger PCB is
illustrated in figures 9 and 10.

Extra protection can be added to the ballistic data logger for applications in high-shock
environments. An example of supplementary protection is presented in figure 11. Metal plates
are added to the top and bottom surfaces of the data logger and the entire assembly is potted in
high-thermal conductivity epoxy to yield a robust, monolithic structure. With this additional
protection the data logger weighs 730 g and is 1 in thick.

*Digi-Key Corporation, 701 Brooks Ave. S., Thief River Falls, MN 56701-0677, 800-344-4539, http://www.digikey.com.

 10

Figure 4. Design of the top or first layer of the ballistic data logger printed circuit board.

 11

Figure 5. Design of the second layer of the ballistic data logger printed circuit board.

 12

Figure 6. Design of the third layer of the ballistic data logger printed circuit board.

 13

Figure 7. Design of the bottom or fourth layer of the ballistic data logger printed circuit board.

 14

Figure 8. Transparent view of data logger PCB showing connections between all four layers.

 15

Table 3. Procurement information for components used in the ballistic data logger.

Component
Description

Schematic
Designations

Digi-Key
Part No.

Cost/Units

IC MCU FLASH 16KX16 CAN
44PLCC IC2 PIC18F458-I/L-ND $185.50/25

IC SOCKET PLCC 44POS SMT for IC2 ED80010-ND $15.05/10
IC SRAM 512KX8 LP WIDE

32-SOIC IC1 and IC4 428-1075-ND $118.00/25

IC 12STG BINARY COUNTER
16-SOIC IC3 296-14558-1-ND $12.00/25

IC ADC 8BIT MPU 2CH MUX
20-SOIC IC6 ADC08062CIWM-ND $83.60/25

IC TXRX RS232 1MBPS LP 16-
SOIC IC7 MAX2323CSE-ND $79.00/25

OSCILLATOR 40MHZ
HCMOS SMD OSC1 CW308-ND $96.75/10

IC LITH BAT CHRG CTRLR 8-
SOIC BC1 LM3622AM-8.4-ND $52.73/25

IC VOLT REG FIXED POS
SOT-223 VR1, VR2, and VR3 296-12290-1-ND $31.50/100

CAP .1UF 25V CERAMIC X7R
0805 C1-5, C9-13, C20, C22, and C24 PCC1828CT-ND $14.20/500

CAP CER .47UF 25V X7R 10%
0805 C14-16, C19, C21, and C23 445-1353-1-ND $20.80/100

CAP TANTALUM 22UF 16V
20% SMD C7, C8, C17, and C18 493-2419-1-ND $80.75/100

RES 1.00 OHM 1/8W 1% 0805
SMD R2 and R10 311-1.00CCT-ND $4.93/200

RES 1.00K OHM 1/8W 1%
0805 SMD R5 and R6 311-1.00KCCT-ND $4.93/200

RES 4.70K OHM 1/8W 1%
0805 SMD R4, R11, and R12 311-4.70KCCT-ND $4.93/200

RES 10.0K OHM 1/8W 1%
0805 SMD R1, R3, and R7 311-10.0KCCT-ND $4.93/200

RES 20.0K OHM 1/8W 1%
0805 SMD R8 and R9 311-20.0KCCT-ND $4.93/200

TRANS PNP -40V -2000MA
SOT-223 T1 and T3 FZT790ACT-ND $59.13/100

TRANS NPN SW 40V 200MA
SOT-223 T2 568-1182-1-ND $18.90/100

DIODE SWITCH 100V 200MW
SOD-323 D1 BAV-19WSDICT-ND $21.60/100

 16

Ch 1 Memory

Microcontroller

Ch 2 Memory

Address
Generator

Anal to Dig Converter

Balancing Weight

Crystal Oscillator

Voltage Regulator (3)

Balancing Weight
Mounting Holes (4) Pass Holes (4)

Serial Port Converter

LED Annunciator

Figure 9. Placement of components on top side of ballistic data logger PCB.

Balancing Weight Charging Circuitry

LiPO Battery (4)

Voltage Regulator (3)

Electronic Switch

Figure 10. Placement of components on bottom side of ballistic data logger PCB.

 17

Figure 11. Ballistic data logger in protective packaging.

3. Ballistic Data Logger Software

The ballistic data logger’s PIC18F458 microcontroller runs software that is coded in the C
programming language and the microcontroller’s native assembly language. This mixed-
language approach offers access to both the high-level functions provided by C and the inherent
speed of assembly language execution. The C Main function serves as the software foundation
from which additional C and assembly functions are called as required. Microchip’s MPLAB
C18 compiler (10) is combined with the Microchip MPLAB Integrated Development
Environment (11) to provide the toolset that makes mixed-language programming possible.

The C and assembly codes are presented in appendices A and B along with explicit
documentation that often cites specific references where additional information is available.
These listings are meant to provide a foundation for individuals who need to recreate and modify
the actions of the ballistic data logger.

The microcontroller assembler header file is an ancillary segment of code that maps the
microcontroller’s special function registers (SFRs) and associated bits to mnemonic identifiers as
well as defining the configuration register values. Use of this header file is convenient for a
number of reasons. First, equating the SFR register values to mnemonic names streamlines the
coding process. For example, it is easier to remember the microcontroller’s port A register
mnemonic name PORTA than it is to remember its address value of 0xF80. Explicitly defining

 18

the configuration register values in this header file avoids a reliance on configuration register
default values that exhibit an unnerving ability to seemingly change at will. Finally, the modular
nature of the microcontroller assembler header file facilitates the process of converting the
ballistic data logger software to updated hardware that may utilize a different microcontroller.
Assuming that the new microcontroller has the same general capabilities and architecture, an
appropriately modified header file should allow the legacy code to run on the new hardware.
The microcontroller assembler header file is listed in appendix C.

The linker script file defines the memory architecture of the microcontroller so the linker can
place code in available ROM memory regions and variables in available RAM memory regions.
Regions that are marked PROTECTED are not used for general allocation of program or data.
Code or data will only be allocated into these regions if an absolute address is specified for the
section or if the section is assigned to the region using a SECTION directive in the linker script
file. The linker script file is listed in appendix D.

4. Ballistic Data Logger Test and Evaluation

In this test case the ballistic data logger is used to simultaneously acquire a high-frequency and a
low-frequency analog signal to verify the specified data recording time and the maximum data
acquisition rate. The acquired data are displayed as a collection of points in figure 12. For
display purposes the data record has been divided into quarters with the first recorded data
plotted on the left hand side of the top graph and the final recorded data plotted on the right hand
side of the bottom graph. Specifically, the low-frequency analog signal is a 10-Hz sine wave that
is plotted in red and the high-frequency analog signal is a sine wave with a period of 4.6 µs,
which is plotted in blue. Data are acquired at the maximum dual-channel recording rate of 2.3 µs
per data pair. Each wavelength of the red 10-Hz sinusoidal curve spans 0.1 s. The fact that there
are slightly more than 12 complete wavelengths of the 10-Hz sinusoid substantiates the specified
total recording time for the maximum data acquisition rate of 1.21 s, as listed in table 1.

The high-frequency data plotted in blue require additional explanation. With a period of 4.6 µs,
the high-frequency sinusoid has a period that is twice the data acquisition time of 2.3 µs per data
point. Therefore, successive measurements of the high-frequency sinusoid will be separated in
time by half the period and successive measurement values will correspond to sinusoid values
that are 180° out of phase. The coarse scale of figure 12 does not allow this behavior to be
observed. What is evident is the very long wave beat frequency between the 4.6-µs measurement
interval generated by the ballistic data logger and the 4.6-µs sinusoidal period generated by the
signal generator that is supplying the analog test signals. Actually, the observance of this beat
frequency provides an extremely accurate method for quantifying the data logger’s acquisition
rate against a known time standard.

 19

Figure 12. Acquired sinusoidal test data.

The true nature of the high-frequency sinusoidal signal is more evident in figure 13. For this
graph, adjacent data points are connected by a line segment. Also, a fifth plot is added at the
bottom that magnifies the data region denoted by the two closely spaced vertical cursors on the
right hand side of the second plot from the top. Over the short time span of this magnified view,
the low-frequency red signal appears constant. However, the high-frequency nature of the blue
signal is evident with adjacent data points spanning the entire voltage measurement range. The
maximum data acquisition rate of 2.3 µs per channel data pair is therefore verified.

 20

Figure 13. Analysis of acquired sinusoidal test data.

 21

5. References

1. Lithium Polymer Battery Systems Section 3 – Safety, Charging, & Discharging; in the
Handbook of FMA, Inc. http://www.fmadirect.com/support_docs/item_1197.pdf (accessed
July 2005).

2. National Semiconductor LM3622 Lithium-Ion Battery Charger Controller Datasheet.
http://www.national.com/ds/LM/LM3622.pdf (accessed February 2000).

3. Texas Instruments Incorporated. uA78M00 Series Positive-Voltage Regulators Texas
Instruments Datasheet. http://focus.ti.com/lit/ds/symlink/ ua78m05/pdf (accessed 2003).

4. Microchip Technology Incorporated. Microchip PIC18FXX8 Data Sheet.
http://ww1.microchip.com/downloads/en/devicedoc/41159d.pdf (accessed 2003).

5. National Semiconductor ADC08061/ADC08062 500 ns A/D Converter with S/H Function
and Input Multiplexer Datasheet. http://www.national.com/ds/ DC/ADC08061.pdf (accessed
June 1999).

6. Cypress Semiconductor Corporation. Cypress CY62148B MoBL 512K x 8 Static RAM
Datasheet. http://www.cypress.com/portal/server.pt/ gateway
/PTARGS_0_2_1524_209_259_43/http%3B/sjapp20%3B7001/publishedcontent/publish
/design_resources/datasheets/contents/cy62148b_5.pdf (accessed October 2001).

7. Texas Instruments Incorporated. CD54HC4040, CD74HC4040, CD54HCT4040,
CD74HCT4040 High-Speed CMOS Logic 12-Stage Binary Counter Texas Instruments
Datasheet. http://focus.ti.com/lit/ds/symlink/cd74hc4040.pdf (accessed October 2003).

8. Interfacing the Serial/RS232 Port. http://beyondlogic.org/serial/serial.htm (accessed April
2006).

9. 3.0V to 5.5V, Low-Power, up to 1Mbps, True RS-232 Transceivers Using Four 0.1uF
External Capacitors Maxim Datasheet. http://pdfserv.maxim-ic.com/en/ds/
MAX3222-MAX3241.pdf (accessed March 1999).

10. Microchip MPLAB C18 Datasheet. http://www.microchip.com/stellent/idcplg?IdcService
=SS_GET_PAGE&nodeld=1406&dDocName=en010014 (accessed April 2006).

11. Microchip MPLAB Integrated Development Environment Datasheet.
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeld=1406&d
DocName=en019469 (accessed April 2006).

 22

INTENTIONALLY LEFT BLANK.

 23

Appendix A. Listing of Ballistic Data Logger Microcontroller
C Code

 This appendix appears in its original form, without editorial change.

 24

//<<<<<<------------------ 77 character width template ---------------->>>>>>
/*
 BALLISTIC DATA LOGGER C CODE

File: W2006_04_XXC.c
Author: Tom Kottke
Date: 01 April 2006
Language MPLAB C18
Microprocessor PIC18F458
*/

// Specify included files ***

#include <p18f458.h> //microcontroller header file located at
 //C:\mcc18\h\p18f458.h
#include <stdlib.h> //standard C library header file

// Define constant values ***

#define max_mem_size 0x7FFFF //maximum memory address

// Declare functions **

// the following declarations are for the C language functions --------------
 void main(void); //main function
 void low_isr(void); //low priority interrupt func
 void high_isr(void); //hi priority interrupt func
 void set_low_isr_vector(void); //set low int rout. vector
 void set_high_isr_vector(void); //set high int rout vector
 void tx_string(rom char*); //transmit a string on USART
 void tx_START(void); //send "START" on serial port
 void tx_mem_all(void); //dump all mem to serial port
 void tx_END(void); //send "END" on serial port
 void tx_CLEAR(void); //send "CLEAR on serial port
 void tx_ERASING(void); //send "ERASING" on ser. port
 void tx_FULL(void); //send "FULL" on serial port
 void clear_mem(void); //clear and preset memory
 void flash_led(char,char,char,char);//blink LED

// the following declarations are for the assembly language functions -------
extern void init_interr(void); //initialize the interrupts
extern void init_PORT_A(void); //initialize port A
extern void init_PORT_B(void); //initialize port B
extern void init_PORT_C(void); //initialize port C
extern void init_PORT_D(void); //initialize port D
extern void init_PORT_E(void); //initialize port E
extern void init_serial(void); //initialize serial port
extern void init_ADC(void); //initialize anal to dig conv
extern void set_interr(void); //reconfigure interrupts
extern void rst_mem_add(void); //reset hardware mem. address
extern void tx_char(char); //transmit character on USART
extern char read_mem_0(void); //read mem location in chip 0

 25

extern char read_mem_1(void); //read mem location in chip 1
extern void inc_mem_add(void); //increment memory address
extern char rx_poll(void); //determine if rx occurred
extern char rx_char(void); //capture serial rx byte
extern void write_mem_0(char); //write to mem loc. in chip 0
extern void write_mem_1(char); //write to mem loc. in chip 1
extern char test_mem_clear(void); //test for clear memory
extern void pre_conf_acq(void); //configure for data acquis
extern void get_data_0(void); //acquire channel 0 data
extern void get_data_1(void); //acquire channel 1 data
extern void post_conf_acq(void); //post data acq configuration
extern void time_delay(char,char,char); //generate time delay
extern void turn_led_on(void); //turn on annunciator LED
extern void turn_led_off(void); //turn off annunciator LED
extern void clear_int_flag(void); //clears INT0 interrupt flag
extern void acquire_data(void); //acquires all data
extern char test_interrupt(void); //tests interrupt value

// Set up high priority interrupt jump vector *******************************

#pragma code hi_int_vector //hi_int_vector refers to a
void set_high_isr_vector(void) //section of ROM program
{ //memory space as defined in
 _asm //the linker script from
 GOTO high_isr //0x0008 to 0x0017. high_isr
 _endasm //refers to the location of
} //a C language function.
 //_asm and _endasm delimit in-line assembly operation

// Main code **

#pragma code main_vector //when compiled, the following code will
 //be located in the ROM program memory
 //space "main_vector" as defined in the
 //linker script starting at 0x0800

void main(void)
{
 // the following code initializes the microcontroller on power-up

 time_delay(16,255,255); // call assembly language routine to
 // generate power-up time delay
 init_interr(); // call assembly language routine to
 // turn off interrupts
 init_PORT_A(); // call assembly language routine to
 // initialize port A
 init_PORT_B(); // call assembly language routine to
 // initialize port B
 init_PORT_C(); // call assembly language routine to
 // initialize port C
 init_PORT_D(); // call assembly language routine to
 // initialize port D
 init_PORT_E(); // call assembly language routine to
 // initialize port E
 init_serial(); // call assembly language routine to
 // initialize serial port
 init_ADC(); // call assembly language routine to

 26

 // initialize analog to digital converter
 set_interr(); // call assembly language routine to
 // turn on desired interrupts
 flash_led(1,19,4,106); // visually display power on status
 // by flashing LED once

}
//___
void tx_FULL(void) //routine to output the word FULL
{
 rom near static unsigned char *string_tx; //pointer to ROM
 //text data

 string_tx = "FULL"; //keyword output to signal that the
 tx_string(string_tx); // memory is full
}
//___
void clear_mem(void) //routine to clear and preset memory
{
 near long l; //declare long integer
 near char index=0; //declare char

 rst_mem_add(); //reset mem add
 if(test_mem_clear()) // visually display clear memory status
 {
 flash_led(9,19,4,106); //flash LED 9 times if
 } //memory is clear

// the following loop is the default code that is run continuously after the
// microcontroller is initialized and when data is not being acquired. this
// loop outputs the contents of the memory through the serial port.

loop:
 if(test_mem_clear()) //if mem is clear
 {
 tx_CLEAR(); //then send the word "CLEAR" on ser. port
 }
 else
 {
 tx_FULL(); //else send the word "FULL" on ser. port
 }
 tx_START(); //send word "START" on serial port
 tx_mem_all(); //dump entire memory to serial port
 tx_END(); //send word "END" on serial port

 if(rx_poll()) //if ser port has rec data...
 {
 if(rx_char()==0b01010101)//if serial port value = 85
 {
 tx_ERASING();//send ERASING on ser. port
 clear_mem(); //clear and preset memory
 tx_CLEAR(); //send CLEAR on ser. port
 }
 }
 goto loop;
}

 27

// C Functions Code Listing ***

void tx_string(rom near unsigned char *tran_string)//routine to output
{ //a string along with the
 //end-of-string delimiter, 0
 near unsigned char j=0; //declare char in access mem

 while(*(tran_string+j))
 {
 tx_char(*(tran_string + j++)); //call to assem.

 //language rout.
 }
 tx_char(*(tran_string + j)); //output end-of-string marker
}

//___
void tx_mem_all(void)
{
 near long l; //declare long in access data memory
 near int i; //declare integer in access data memory

 rst_mem_add(); //call assembly language routine
 // to reset memory address to zero
 for (l=0x00 ; l<=max_mem_size ; ++l)
 {
 init_PORT_D(); //call assembly routine
 //to conf port D for input
 tx_char(read_mem_0()); //call assembly routine
 //to output data value on ser
 tx_char(read_mem_1()); //call assembly routine
 //to output data value on ser
 inc_mem_add(); //call assembly routine
 //to output carriage return
 }
 if (test_mem_clear()) //display memory status on LED
 {
 flash_led(10,19,4,106); //flash led 10 times
 }
 else
 {
 flash_led(1,19,4,106); //flash led once
 }
}
//___

void tx_START(void) //routine to output the word START
{
 rom near static unsigned char *string_tx; //pointer to ROM
 //text data

 string_tx = "START"; //keyword output to signal start of
 tx_string(string_tx); // computer memory dump
}
//___
void tx_END(void) //routine to output the word END
{

 28

 rom near static unsigned char *string_tx; //pointer to ROM
 //text data

 string_tx = "END"; //keyword output to signal end of
 tx_string(string_tx); // computer memory dump
}
//___
void tx_CLEAR(void) //routine to output the word CLEAR
{
 rom near static unsigned char *string_tx; //pointer to ROM
 //text data

 string_tx = "CLEAR"; //keyword output to signal clear and
 tx_string(string_tx); // preset memory
}
//___
void tx_ERASING(void) //routine to output the word ERASING
{
 rom near static unsigned char *string_tx; //pointer to ROM
 //text data

 string_tx = "ERASING"; //keyword output to signal memory is
 tx_string(string_tx); // being erased

 for(l=0x00 ; l<=max_mem_size ; ++l,++index)//cycling through
 { // all memory addresses
 write_mem_0(index); //loading them with ramp
 write_mem_1(index); //function values
 inc_mem_add(); //increment address value
 }
}
//___
void flash_led(char N,char D3,char D2,char D1) //routine to
 //flash LED specified number
 //of times at specified rate
{
 near unsigned char i; //declare char in access mem
 for(i=0 ; i<N ; ++i)
 {
 turn_led_on(); //ass. call to turn LED on
 time_delay(D3,D2,D1); //ass. call to gen time delay
 turn_led_off(); //ass. call to turn LED off
 time_delay(D3,D2,D1); //ass. call to gen time delay
 }
}

// Interrupt Service Routine Codes **

#pragma interruptlow low_isr
void low_isr(void)
{
// not utilized at this time
}
//___

#pragma interrupt high_isr //interrupt code to acquire data

 29

 //high priority interrupt is accessed by
void high_isr(void) //high level on RB0/INT0, pin 36
{
 near int i; //declare integer i in access data memory

 for (i=0 ; i<100 ; ++i) //testing the validity of the
 { //interrupt signal by
 if(!test_interrupt()) //sampling it multiple times
 {
 goto false;
 }
 }

 if(test_mem_clear()) //if the memory is clear
 {
 rst_mem_add(); //reset memory address
 pre_conf_acq(); //configure for data acquis

 acquire_data();
 post_conf_acq(); //conf for post data acquis
 flash_led(3,19,4,106); //flash LED 3 times
 clear_int_flag(); //clear the interrupt flag
 }
 else
 {
 clear_int_flag(); //clear the interrupt flag
 }
false: clear_int_flag(); //clear the interrupt flag

}

 30

INTENTIONALLY LEFT BLANK.

 31

Appendix B. Listing of Ballistic Data Logger Microcontroller
Assembly Code

 Thie appendix appears in its original form, without editorial change.

 32

;<<<<<<--------------------- 77 character width template -------------->>>>>>
;
; BALLISTIC DATA LOGGER ASSEMBLY CODE
;
;File: W2006_04_xxa.asm
;Author: Tom Kottke
;Date: 01 April 2006
;Language MPLAB Assember
;Microprocessor PIC18F458

; Specify included files **

#include <TK_PIC18F458_DL.inc> ;TK specific header file located at
 ;C:\Work\PIC\IR_Prox\D_Log\W2005_07\...

; Declare functions ***

 global init_interr ;declaring assembly language
 global init_PORT_A ;routines as global so they
 global init_PORT_B ;can be called by C code
 global init_PORT_C
 global init_PORT_D
 global init_PORT_E
 global init_serial
 global init_ADC
 global set_interr
 global rst_mem_add
 global tx_char
 global read_mem_0
 global read_mem_1
 global inc_mem_add
 global rx_poll
 global rx_char
 global write_mem_0
 global write_mem_1
 global test_mem_clear
 global pre_conf_acq
 global get_data_0
 global get_data_1
 global post_conf_acq
 global time_delay
 global turn_led_on
 global turn_led_off
 global clear_int_flag
 global acquire_data
 global test_interrupt

; Reserve space and declare names of uninitialized variables in access RAM **

 udata_acs ;directive declares the

 33

 ;beginning of a section of
 ;access uninitialized data.
i res 1 ;syntax is variable name, key
delay_cnt_1 res 1 ;word res, number of bytes to
delay_cnt_2 res 1 ;be reserved
delay_cnt_3 res 1
count_1 res 1
count_2 res 1

; Code section **

 code ;directive declares the
 ;beginning of a section of
 ;program code

;ASSEMBLY FUNCTIONS TO BE CALLED BY C LANGUAGE PROGRAM **********************
;__
;Name: init_interr
;Purpose: To initialize the PIC18F458 interrupts when the microcontroller
; is first powered up to benign settings that will not interfere
; with subsequent initialization activities
;Passed: No variables are passed to this routine.
;Returned: No variables are returned from this routine.
;Actions: Interrupt priority levels are enabled, high priority interrupts
; are disabled, low priority interrupts are disabled, timer 0
; overflow interrupt is disabled, INT0 external interrupt is dis-
; abled, port B change interrupts are disabled, all port B pull-
; ups are disabled
;Notes: Registers RCON, INTCON, and INTCON2 are special function
; registers that are accessed through the access bank.
;References:PIC18FXX8 Data Sheet pages 58, 79, 80, and 47

init_interr
 BSF RCON,IPEN,0 ;enable priority levels on
 ; interrupts
 BCF INTCON,GIE_GIEH,0 ;disable all high prior inter
 BCF INTCON,PEIE_GIEL,0 ;disable all low prior interr
 BCF INTCON,TMR0IE,0 ;disable T0 overflow interr
 BCF INTCON,INT0IE,0 ;disable INT0 ext interr
 BCF INTCON,RBIE,0 ;disable PORT B change interr
 BSF INTCON2,RBPU_,0 ;disable PORT B pull ups

 RETURN
;___
;Name: init_PORT_A
;Purpose: To configure the 7-bit wide bi-directional port A of the
; PIC18F458 microcontroller for digital I/O.
;Passed: No variables are passed to this routine.
;Returned: No variables are returned from this routine.
;Actions: Port A output data latches are cleared, port A is configured for
; digital I/O on all seven pins, and all 7 bits are configured as
; outputs.
;Notes: This port is used to set the seven least significant bits of the
; memory address. The highest bit of this port also supplied the
; clock pulse for the 74HC4040 that supplies the remaining address
; bits. Registers LATA, ADCON1, and TRISA are special function
; registers that are accessed through the access bank.

 34

;References:PIC18FXX8 Data Sheet pages 93, 242 and 47

init_PORT_A
 CLRF LATA,0 ;clear output data latches
 MOVLW 07h ;configure PORT A for digital
 MOVWF ADCON1,0 ; I/O on all pins
 MOVLW b'00000000' ;PORT A I/O direct. template
 MOVWF TRISA,0 ;define PORT A I/O directions

 RETURN
;__
;Name: init_PORT_B
;Purpose: To configure the 8-bit wide bi-directional port B of the
; PIC18F458 microcontroller for digital I/O.
;Passed: No variables are passed to this routine.
;Returned: No variables are returned from this routine.
;Actions: Port B output data latches are cleared, bits 0 and 5-7 are
; configured as inputs while bits 1 through 4 are configured as
; outputs.
;Notes: Bit 0 of port B is configured as an input and is available as an
; interrupt source. Bits 1 through 4 are used to control the
; operation of the ADC08062 analog to digital conversion chip.
; Specifically, bit 1 determines which of the two ADC inputs is
; active, bit 2 controls the active-low chip select, bit 3 controls
; the active-low read line, and bit 4 controls the active-low write
; line. Bit 5 is not utilized and bits 6 and 7 are reserved for In-
; Circuit-Serial-Programming operations.Registers LATB and TRISB
; are special function registers that are accessed through the
; access bank.
;References:PIC18FXX8 Data Sheet pages 96 and 47

init_PORT_B
 CLRF LATB,0 ;clear output data latch
 MOVLW b'00011100' ;port B initial latch values
 MOVWF LATB,0 ;set port B latch values
 MOVLW b'11100001' ;PORT B I/O direct. template
 MOVWF TRISB,0 ;define PORT B I/O directions

 RETURN
;__
;Name: init_PORT_C
;Purpose: To configure the 8-bit wide bi-directional port C of the
; PIC18F458 microcontroller for digital I/O.
;Passed: No variables are passed to this routine.
;Returned: No variables are returned from this routine.
;Actions: Port C output data latches are cleared, bits 0 through 6 are
; configured as outputs and bit 7 is configured as an input.
;Notes: Bit 0 is configured as an output and is available to act as an
; event annunciators. Bit 1 is configured as an input to monitor
; the most significant bit of the address bus so that data
; acquisition can be terminated at the appropriate time. Bits 2
; through 4 are outputs that control the actions of memory chip 0.
; Specifically, bit 2 controls the active-low chip enable line, bit
; 3 controls the active-low write enable line, and bit 4
; controls the active-low output enable line. Bit 5 is an output
; that provides an active-high reset signal to the 74HC4040 memory
; address counter counter. Bits 6 and 7 are configured at an output

 35

; and input respectively and are reserved for use by the serial
; port. Registers LATC and TRISC are special function registers
; that are accessed through the access bank.
;References:PIC18FXX8 Data Sheet pages 100 and 47

init_PORT_C
 CLRF LATC,0 ;clear output data latch
 MOVLW b'00011100' ;port C initial latch values
 MOVWF LATC,0 ;set port C latch values
 MOVLW b'10000010' ;PORT C I/O direct. template
 MOVWF TRISC,0 ;define PORT C I/O directions

 RETURN
;__
;Name: init_PORT_D
;Purpose: To configure the 8-bit wide bi-directional port D of the
; PIC18F458 microcontroller for digital input.
;Passed: No variables are passed to this routine.
;Returned: No variables are returned from this routine.
;Actions: Port D output data latches are cleared, comparator functions are
; disabled, and all eight bits are configured as inputs.
;Notes: All eight bits of port D are used to access the 8-bit data bus.
; These bits are initially set as high impedence inputs that will
; not interefer with the data acquisition process. Registers LATD,
; CMCON, and TRISD are special function registers that are accessed
; through the access bank.
;References:PIC18FXX8 Data Sheet pages 102, 249 and 47

init_PORT_D
 CLRF LATD,0 ;clear output data latch
 MOVLW b'00000111' ;disable all comparator
 MOVWF CMCON,0 ; functions
 MOVLW b'11111111' ;PORT D I/O direct. template
 MOVWF TRISD,0 ;define PORT D I/O directions

 RETURN
;__
;Name: init_PORT_E
;Purpose: To configure the 3-bit wide bi-directional port E of the
; PIC18F458 microcontroller for digital output.
;Passed: No variables are passed to this routine.
;Returned: No variables are returned from this routine.
;Actions: Port E output data latches are cleared, and all three bits are
; configured as outputs.
;Notes: The three bits of port E are used to control memory chip 1.
; Specifically, bit 0 controls the active-low chip enable line, bit
; 1 controls the active-low write enable line, and bit 2 controls
; the active-low output enable line. Registers LATE, and TRISE are
; special function registers that are accessed through the access
; bank.
;References:PIC18FXX8 Data Sheet pages 104 and 47

init_PORT_E
 CLRF LATE,0 ;clear output data latch
 MOVLW b'111' ;port E initial latch values
 MOVWF LATE,0 ;set port E latch values
 MOVLW b'000' ;PORT E I/O direct. template

 36

 MOVWF TRISE,0 ;define PORT E I/O directions

 RETURN
;__
;Name: init_serial
;Purpose: To configure the Universal Synchronous/Asynchronous Receiver
; Transmitter (USART) on the PIC18F458 microcontroller for serial
; communications with an external monitor/server personal computer.
;Passed: No variables are passed to this routine.
;Returned: No variables are returned from this routine.
;Actions: The microcontroller serial port is configured for 8-bit trans-
; mission, serial transmission is enabled, the USART is configured
; for asynchronous communication, the high speed baud rate genera-
; tion mode is selected, the serial port is enabled, 8-bit
; reception is configured, continuous serial port reception is
; enabled, address detection is disabled, the serial port baud rate
; generator is configured for a baud rate of 38400, the USART
; receive interrupt is set to high priority, and the USART receive
; interrupt is enabled.
;Notes: The PIC18F458 microcontroller uses bits 6 and 7 of port C to
; transmit and receive serial data. Registers TXSTA, RCSTA, SPBRG,
; IPR1, and PIE1 are special function registers that are accessed
; through the access bank.
;References:PIC18FXX8 Data Sheet pages 183-192, 88, 85, and 47

init_serial
 MOVLW b'00100110' ;transmit status reg template
 MOVWF TXSTA,0 ;define transmit status reg
 MOVLW b'10010000' ;receive status reg template
 MOVWF RCSTA,0 ;define receive status regist
 MOVLW d'64' ;baud rate gener 38.4 Kbps
 MOVWF SPBRG,0 ;define baud rate gener reg
 BSF IPR1,RCIP,0 ;set rx interrupt to hi prior
 BCF PIE1,RCIE,0 ;disable USART rx interrupt

 RETURN
;__
;Name: init_ADC
;Purpose: To initialize the ADC08062 analog to digital converter to benign
; settings that will not interfere with subsequent activities.
;Passed: No variables are passed to this routine.
;Returned: No variables are returned from this routine.
;Actions: The ADC08062 active-low chip select line is pulled high, the
; active-low write line is pulled high, and the active-low read
; line is pulled high.
;Notes: The chip select line of the ADC08062 analog to digital converter
; is controlled by bit 2 of port B which has been equated in the
; included file TK_PIC18F458_DL.inc to "CS". Similarily, the write
; line is controlled by bit 4 which has been equated to "WR" and
; the read line is controlled by bit 3 which has been equated to
; "RD". Register PORTB is a special function register that is
; accessed through the access bank.
;References:PIC18FXX8 Data Sheet pages 96 and 47

init_ADC
 BSF PORTB,CS,0 ;set active-lo chip select

 37

 BSF PORTB,WR,0 ;set active-lo write line
 BSF PORTB,RD,0 ;set active-lo read line

 RETURN
;__
;Name: set_interr
;Purpose: To reconfigure the PIC18F458 interrupts after the microcontroller
; has been initialized.
;Passed: No variables are passed to this routine.
;Returned: No variables are returned from this routine.
;Actions: Interrupt 0 is configured to activate on a rising edge at RB0,
; INT0 is enabled, and all high priority interrupts are enabled.
;Notes: INT0 is always a high priority interrupt source. Registers
; INTCON2 and INTCON are special function registers that are
; accessed through the access bank.
;References:PIC18FXX8 Data Sheet pages 80, 79, and 47

set_interr
 BSF INTCON2,INTEDG0,0 ;interr on INT0 rising edge
 BSF INTCON,INT0IE,0 ;enable INT0 ext interr
 BSF INTCON,GIE_GIEH,0 ;enable all high prior inter

 RETURN
;__
;Name: rst_mem_add
;Purpose: To reset the memory address bus.
;Passed: No variables are passed to this routine.
;Returned: No variables are returned from this routine.
;Actions: The latch of port A, which provides the 7 least significant bits
; of the memory address, is cleared and a positive pulse is
; supplied to the memory reset line of the 74HC4040 to zero the
; remaining 12 bits.
;Notes: The master reset line of the 74HC4040 is controlled by bit 5 of
; port C which has been equated in the included file
; TK_PIC18F458_DL.inc to "MR". Registers LATA and PORTC are special
; function registers that are accessed through the access bank.
;References:PIC18FXX8 Data Sheet pages 100 and 47.

rst_mem_add
 CLRF LATA,0 ;clear port A output
 BSF PORTC,MR,0 ;generate a short positive
 NOP ;pulse on the 74HC4040 master
 BCF PORTC,MR,0 ;reset line

 RETURN
;__
;Name: tx_char
;Purpose: To transmit a single ASCII character through the serial port on
; the PIC18F458 microcontroller.
;Passed: A 1-byte ASCII character value is passed to this routine.
;Returned: No variables are returned from this routine.
;Actions: The transmission buffer is determined to be empty, the passed
; argument is recovered from the software stack and transmitted
; through the serial port.
;Notes: This routine waits for any previous serial transmissions to be
; completed by monitoring the TXIF bit of the peripheral interrupt
; request register, PIR1, which remains low until the transmit

 38

; buffer is empty. When this assembly routine is called by the C
; program the single argument is pushed onto the top of the
; software stack and the stack pointer is incremented to the next
; available empty stack location. The argument value is recovered
; by accessing the memory location of the current stack pointer
; decremented by one. This is accomplished by first setting the
; working register WREG to a value of minus one (0xFF) and using
; the indirect addressing operation PLUSW1 that uses WREG as an
; offset to the current stack pointer. Register PIR1 is a special
; function register that is accessed through the access bank.
;References:PIC18FXX8 Data Sheet pages 55, 82, 189, and 47. MPLAB C18 C
; Compiler User's Guide pages 38 - 45.
tx_char
tx_clear1 BTFSS PIR1,TXIF,0 ;is TXREG empty ?
 GOTO tx_clear1 ;NO, retest TXREG status

 MOVLW h'FF' ;load -1 into WREG
 MOVFF PLUSW1,TXREG ;move FSR1 offset by WREG
 NOP ;delay to accomidate delay in
 NOP ; updating of TXIF

 RETURN
;__
;Name: read_mem_0
;Purpose: To read and return a single 8-bit value from the addressed
; memory location in memory chip 0.
;Passed: No variables are passed to this routine.
;Returned: One 8-bit value is returned from this routine.
;Actions: The active-low write enable line is forced high to enable a
; memory location read, the active-low chip enable line is forced
; low to activate the chip, the active-low output enable line is
; forced low to present the memory data to the data bus, the data
; on the data bus is input through port D of the microcontroller
; and transferred to the WREG register, the output enable line is
; forced high to clear the data bus, and the chip enable line is
; forced high to place the memory chip in standby mode.
;Notes: 8-bit arguments are transferred from assembly functions to C
; programs in the WREG register. The write enable line of the
; memory chip 0 is controlled by bit 3 of port C which has been
; equated in the included file TK_PIC18F458_DL.inc to "WE0".
; Similarily, the chip enable line is controlled by bit 2 which has
; been equated to "CE0" and the output enable line is controlled by
; bit 4 which has been equated to "OE0". Registers PORTC and PORTD
; are special function registers that are accessed through the
; access bank.
;References:PIC18FXX8 Data Sheet pages 100, 102 and 47. MPLAB C18 C Compiler
; User's Guide pages 37.
read_mem_0
 BSF PORTC,WE0,0 ;set active-lo write enable
 BCF PORTC,CE0,0 ;clear active-lo chip enable
 BCF PORTC,OE0,0 ;clear active-lo output enab
 MOVF PORTD,0,0 ;move data at port D to WREG
 BSF PORTC,OE0,0 ;set active_lo output enable
 BSF PORTC,CE0,0 ;set active_lo chip enable

 RETURN
;__

 39

;Name: read_mem_1
;Purpose: To read and return a single 8-bit value from the addressed
; memory location in memory chip 1.
;Passed: No variables are passed to this routine.
;Returned: One 8-bit value is returned from this routine.
;Actions: The active-low write enable line is forced high to enable a
; memory location read, the active-low chip enable line is forced
; low to activate the chip, the active-low output enable line is
; forced low to present the memory data to the data bus, the data
; on the data bus is input through port D of the microcontroller
; and transferred to the WREG register, the output enable line is
; forced high to clear the data bus, and the chip enable line is
; forced high to place the memory chip in standby mode.
;Notes: 8-bit arguments are transferred from assembly functions to C
; programs in the WREG register. The write enable line of the
; memory chip 1 is controlled by bit 1 of port E which has been
; equated in the included file TK_PIC18F458_DL.inc to "WE1".
; Similarily, the chip enable line is controlled by bit 0 which has
; been equated to "CE1" and the output enable line is controlled by
; bit 2 which has been equated to "OE1". Registers PORTD and PORTE
; are special function registers that are accessed through the
; access bank.
;References:PIC18FXX8 Data Sheet pages 102, 104 and 47. MPLAB C18 C Compiler
; User's Guide pages 37.
read_mem_1
 BSF PORTE,WE1,0 ;set active-lo write enable
 BCF PORTE,CE1,0 ;clear active-lo chip enable
 BCF PORTE,OE1,0 ;clear active-lo output enab
 MOVF PORTD,0,0 ;move data at port D to WREG
 BSF PORTE,OE1,0 ;set active_lo output enable
 BSF PORTE,CE1,0 ;set active_lo chip enable

 RETURN
;__
;Name: inc_mem_add
;Purpose: To increment the memory address value.
;Passed: No variables are passed to this routine.
;Returned: No variables are returned from this routine.
;Actions: Port A, which provides the 7 least significant bits
; of the memory address, is incremented. If this causes port A to
; roll over from 0xFF to 0x00, then the most significant bit of
; port A, which is connected to the clock pulse line of the
; 74HC4040, will cause the 74HC4040 to increment its value as well.
;Notes: Register port A is a special function registers that is accessed
; through the access bank.
;References:PIC18FXX8 Data Sheet pages 93 and 47.

inc_mem_add
 INCF PORTA,1,0 ;increment port A (LSBs)

 RETURN
;__
;Name: rx_poll
;Purpose: To return a non-zero value if data has been received by the USART
; serial port and a value of 0 if data has not been received.
;Passed: No variables are passed to this routine.

 40

;Returned: One 8-bit value is returned from this routine.
;Actions: The working register WREG is set if data has been received by the
; serial port or WREG is cleared if data has not been received.
;Notes: The reception of serial port data is denoted by the receive
; interrupt flag, RCIF, of the peripheral interrupt request
; register number one, PIR1, being set. Conversely, if RCIF is
; clear, this denotes that serial port data has not been received.
; 8-bit arguments are transferred from assembly functions to C
; programs in the WREG register. Register PIR1 is a special
; function registers that is accessed through the access bank.
;References:PIC18FXX8 Data Sheet pages 82 and 47. MPLAB C18 C Compiler User's
; Guide pages 37.
rx_poll
 BTFSS PIR1,RCIF,0 ;has ser port received data?
 CLRF WREG,0 ;NO, clear WREG
 BTFSC PIR1,RCIF,0 ;has ser port received data?
 SETF WREG,0 ;YES, set WREG

 RETURN
;__
;Name: rx_char
;Purpose: To return a single ASCII character that has been received by the
; USART serial port.
;Passed: No variables are passed to this routine.
;Returned: One 8-bit value is returned from this routine.
;Actions: The contents of the serial port receive register, RCREC, are
; moved to the working register, WREG, and the serial port receive
; interrupt flag bit, RCIF, of the peripheral interrupt request
; register number one, PIR1, is cleared.
;Notes: 8-bit arguments are transferred from assembly functions to C
; programs in the WREG register. Registers PIR1 and RCREG are
; special function registers that are accessed through the access
; bank.
;References:PIC18FXX8 Data Sheet pages 191, 82 and 47. MPLAB C18 C Compiler
; User's Guide pages 37.
rx_char
 MOVF RCREG,0,0 ;move received data to WREG
 BCF PIR1,RCIF,0 ;clear serial port rx flag

 RETURN
;__
;Name: write_mem_0
;Purpose: To write the single byte of data that is passed to this routine
; to the addressed memory location in chip 0.
;Passed: A 1-byte value is passed to this routine.
;Returned: No variables are returned from this routine.
;Actions: Port D is configured as an output port, memory chip 0 is
; configured for input and activated, the byte value to be written
; is recovered from the stack and output onto the data bus through
; port D, the data value is captured into memory chip 0 by pulsing
; the active-low write enable line low, the memory chip is placed
; back into power-down mode, and port D is returned to input port
; status.
;Notes: When this assembly routine is called by the C program the single
; argument is pushed onto the top of the software stack and the
; stack pointer is incremented to the next available empty stack
; location. The argument value is recovered by accessing the memory

 41

; location of the current stack pointer decremented by one. This
; is accomplished by first setting the working register WREG to a
; value of minus one (0xFF) and using the indirect addressing
; operation PLUSW1 that uses WREG as an offset to the current stack
; pointer. The write enable line of the memory chip 0 is controlled
; by bit 3 of port C which has been equated in the included file
; TK_PIC18F458_DL.inc to "WE0". Similarily, the chip enable line is
; controlled by bit 2 which has been equated to "CE0" and the
; output enable line is controlled by bit 4 which has been equated
; to "OE0". Registers TRISD, PORTC, and PORTD are special function
; registers that are accessed through the access bank.
;References:PIC18FXX8 Data Sheet pages 102, 100, and 47. MPLAB C18 C Compiler
; User's Guide pages 38 - 45.
write_mem_0
 MOVLW b'00000000' ;configure port D for output
 MOVWF TRISD,0 ; by modifying direc template
 BSF PORTC,OE0,0 ;set active-lo output enable
 BCF PORTC,CE0,0 ;clear active-lo chip enable
 MOVLW h'FF' ;load -1 into WREG
 MOVFF PLUSW1,PORTD ;move FSR1 offset by WREG
 BCF PORTC,WE0,0 ;pulse the active-lo write
 BSF PORTC,WE0,0 ; enable to capture data
 BSF PORTC,CE0,0 ;set active-lo chip enable
 MOVLW b'11111111' ;PORT D I/O direct. template
 MOVWF TRISD,0 ;define PORT D I/O directions

 RETURN
;__
;Name: write_mem_1
;Purpose: To write the single byte of data that is passed to this routine
; to the addressed memory location in chip 1.
;Passed: A 1-byte value is passed to this routine.
;Returned: No variables are returned from this routine.
;Actions: Port D is configured as an output port, memory chip 1 is
; configured for input and activated, the byte value to be written
; is recovered from the stack and output onto the data bus through
; port D, the data value is captured into memory chip 1 by pulsing
; the active-low write enable line low, the memory chip is placed
; back into power-down mode, and port D is returned to input port
; status.
;Notes: When this assembly routine is called by the C program the single
; argument is pushed onto the top of the software stack and the
; stack pointer is incremented to the next available empty stack
; location. The argument value is recovered by accessing the memory
; location of the current stack pointer decremented by one. This
; is accomplished by first setting the working register WREG to a
; value of minus one (0xFF) and using the indirect addressing
; operation PLUSW1 that uses WREG as an offset to the current stack
; pointer. The write enable line of the memory chip 1 is controlled
; by bit 1 of port E which has been equated in the included file
; TK_PIC18F458_DL.inc to "WE1". Similarily, the chip enable line is
; controlled by bit 0 which has been equated to "CE1" and the
; output enable line is controlled by bit 2 which has been equated
; to "OE1". Registers TRISD, PORTE, and PORTD are special function
; registers that are accessed through the access bank.
;References:PIC18FXX8 Data Sheet pages 102, 104, and 47. MPLAB C18 C Compiler
; User's Guide pages 38 - 45.

 42

write_mem_1
 MOVLW b'00000000' ;configure port D for output
 MOVWF TRISD,0 ; by modifying direc template
 BSF PORTE,OE1,0 ;set active-lo output enable
 BCF PORTE,CE1,0 ;clear active-lo chip enable
 MOVLW h'FF' ;load -1 into WREG
 MOVFF PLUSW1,PORTD ;move FSR1 offset by WREG
 BCF PORTE,WE1,0 ;pulse the active-lo write
 BSF PORTE,WE1,0 ; enable to capture data
 BSF PORTE,CE1,0 ;set active-lo chip enable
 MOVLW b'11111111' ;PORT D I/O direct. template
 MOVWF TRISD,0 ;define PORT D I/O directions

 RETURN
;__
;Name: test_mem_clear
;Purpose: To return a non-zero value if the memory is clear and preset.
;Passed: No variables are passed to this routine.
;Returned: One 8-bit value is returned from this routine.
;Actions: Port D of the PIC18F458 microcontroller is configured for data
; input. The memory address is set to 2^16 and the counting index
; i, which has
; been reserved as a 1-byte variable, is initialized to zero.
; Next, the address 2^16 registers of memory chips 0 and 1 are read
; and compared to the value of the counting index i. If the values
; of the memory registers matches the index value, then the index
; value and the address value are incremented and the process is
; repeated for values of i up to and including 255. If all these
; memory register values match the index values, then the memory is
; assumed to be clear and preset and a nonzero value is returned.
; If any memory register value does not match the associated index
; value, then the memory is not clear and a zero value is returned.
;Notes: 8-bit arguments are transferred from assembly functions to C
; programs in the WREG register. Registers LATD, CMCON, TRISD,
; LATA, PORTC, PORTD, PORTE, PORTA, and WREG are special function
; registers that are accessed through the access bank.
;References:PIC18FXX8 Data Sheet pages 102, 249, 93, 100, 104, 93, and 47.
; MPLAB C18 C Compiler User's Guide pages 37.
test_mem_clear
;configuring port D for data input -------------------------------------
 CLRF LATD,0 ;clear output data latch
 MOVLW b'00000111' ;disable all comparator
 MOVWF CMCON,0 ; functions
 MOVLW b'11111111' ;PORT D I/O direct. template
 MOVWF TRISD,0 ;define PORT D I/O directions
;reset memory address to zero --
 CLRF LATA,0 ;clear port A output (LSBs)
 BSF PORTC,MR,0 ;generate a positive reset
 NOP ;pulse on 74HC4040 master
 BCF PORTC,MR,0 ;reset line (MSBs)
;increment memory address up to a value of 2^16 ------------------------
 CLRF count_1,0 ;clear count_1 counter value
 CLRF count_2,0 ;clear count_2 counter value
count_loop INCF PORTA,1,0 ;increment address value
 DECFSZ count_1,1,0 ;decr count_1, count_1 = 0 ?
 GOTO count_loop ;(NO) go to count_loop
 DECFSZ count_2,1,0 ;decr count_2, count_2 = 0 ?

 43

 GOTO count_loop ;(NO) go to count_loop
;initializing counter index to zero ------------------------------------
 CLRF i,0 ;clear counting index regist.
;read memory 0 location --
cycle BSF PORTC,WE0,0 ;set active-lo write enable
 BCF PORTC,CE0,0 ;clear active-lo chip enable
 BCF PORTC,OE0,0 ;clear active-lo output enab
 MOVF PORTD,0,0 ;move data at port D to WREG
 BSF PORTC,OE0,0 ;set active_lo output enable
 BSF PORTC,CE0,0 ;set active_lo chip enable
;compare memory 0 location to counting index ---------------------------

 CPFSEQ i,0 ;is mem 0 value = i ?
 GOTO notclear ;(NO) go to notclear
;read memory 1 location --
 BSF PORTE,WE1,0 ;set active-lo write enable
 BCF PORTE,CE1,0 ;clear active-lo chip enable
 BCF PORTE,OE1,0 ;clear active-lo output enab
 MOVF PORTD,0,0 ;move data at port D to WREG
 BSF PORTE,OE1,0 ;set active_lo output enable
 BSF PORTE,CE1,0 ;set active_lo chip enable
;compare memory 1 location to counting index ---------------------------
 CPFSEQ i,0 ;is mem 1 value = i ?
 GOTO notclear ;(NO) go to notclear
;increment memory address value --
 INCF PORTA,1,0 ;increment port A (LSBs)
;increment counting index and check for zero value ---------------------
 INCFSZ i,1,0 ;increment i, is i=0 ?
 GOTO cycle ;(NO) go to cycle
;memories are clear and preset, return nonzero value -------------------
 SETF WREG,0 ;set WREG to nonzero value
 RETURN
;memories are not clear, return zero value -----------------------------
notclear CLRF WREG,0 ;NO, clear WREG

 RETURN
;__
;Name: pre_conf_acq
;Purpose: To preconfigure the data logger for data acquisition.
;Passed: No variables are passed to this routine.
;Returned: No variables are returned from this routine.
;Actions: Additional INT0 interrupts are disabled by clearing INT0IE,
; port D of the microcontroller is placed in a high-impedence mode
; to avoid data bus collisions, both memory chips are enabled and
; configured for data writing, and the ADC08062 analog to digital
; converter is enabled.
;Notes: Register LATD, CMCON, TRISD, PORTC, PORTE, and PORTB are special
; function registers that is accessed through the access bank.
;References:PIC18FXX8 Data Sheet pages 102, 249, 100, 104, 96, and 47.

pre_conf_acq
;disable addition INT0 interrupts by clearing INT0IE in INTCON ---------
 BCF INTCON,INT0IE,0 ;clear int enable flag
;ensure that microcontroller port D is in high-impedence input mode ----
 CLRF LATD,0 ;clear output data latch
 MOVLW b'00000111' ;disable all comparator
 MOVWF CMCON,0 ; functions

 44

 MOVLW b'11111111' ;PORT D I/O direct. template
 MOVWF TRISD,0 ;define PORT D I/O directions
;configure memory chip 0 for data write --------------------------------
 BSF PORTC,CE0,0 ;memory chip 0 is disabled
 BSF PORTC,OE0,0 ;mem data lines set for input
 BCF PORTC,WE0,0 ;writing to mem 0 is enabled
;configure memory chip 1 for data write --------------------------------
 BSF PORTE,CE1,0 ;memory chip 1 is disabled
 BSF PORTE,OE1,0 ;mem data lines set for input
 BCF PORTE,WE1,0 ;writing to mem 1 is enabled
;configure ADC08062 analog to digital converter ------------------------
 BCF PORTB,CS,0 ;enable anal to dig converter

 RETURN
;__
;Name: get_data_0
;Purpose: To trigger the acquisition of a single 8-bit data value from the
; analog input line VIN1 of analog to digital converter ADC08062
; and store the value to the current address on memory chip 0.
;Passed: No variables are passed to this routine.
;Returned: No variables are returned from this routine.
;Actions: Analog input line VIN1 is selected, the conversion is initiated
; and a time delay is generated to allow the conversion to proceed,
; the converted value is output to the data bus, and this value is
; captured in memory chip 0.
;Notes: Registers PORTB and PORT C are special function registers that
; are accessed through the access bank.
;References:PIC18FXX8 Data Sheet pages 96, 100, and 47.

get_data_0
 BCF PORTB,A0,0 ;select VIN1 data for conver
 BCF PORTB,WR,0 ;pulse write line low to
 BSF PORTB,WR,0 ; initiate conversion
 NOP ;time delay to allow the
 NOP ; conversion to proceed
 NOP ;
 NOP ;
 BCF PORTB,RD,0 ;output conv value on bus
 NOP ;time delay for data output
 BCF PORTC,CE0,0 ;capture conversion data in
 BSF PORTC,CE0,0 ; memory chip 0
 BSF PORTB,RD,0 ;remove conv data from bus

 RETURN
;__
;Name: get_data_1
;Purpose: To trigger the acquisition of a single 8-bit data value from the
; analog input line VIN2 of analog to digital converter ADC08062
; and store the value to the current address on memory chip 1.
;Passed: No variables are passed to this routine.
;Returned: No variables are returned from this routine.
;Actions: Analog input line VIN2 is selected, the conversion is initiated
; and a time delay is generated to allow the conversion to proceed,
; the converted value is output to the data bus, and this value is
; captured in memory chip 1.
;Notes: Registers PORTB and PORT C are special function registers that

 45

; are accessed through the access bank.
;References:PIC18FXX8 Data Sheet pages 96, 100, and 47.

get_data_1
 BSF PORTB,A0,0 ;select VIN2 data for conver
 BCF PORTB,WR,0 ;pulse write line low to
 BSF PORTB,WR,0 ; initiate conversion
 NOP ;time delay to allow the
 NOP ; conversion to proceed
 NOP ;
 NOP ;
 BCF PORTB,RD,0 ;output conv value on bus
 NOP ;time delay for data output
 BCF PORTE,CE1,0 ;capture conversion data in
 BSF PORTE,CE1,0 ; memory chip 1
 BSF PORTB,RD,0 ;remove conv data from bus

 RETURN
;__
;Name: post_conf_acq
;Purpose: To postconfigure the data logger after the data acquisition.
;Passed: No variables are passed to this routine.
;Returned: No variables are returned from this routine.
;Actions: Port D of the microcontroller is placed in a high-impedence mode
; to avoid data bus collisions, both memory chips are disabled and
; configured for data nonwriting, the ADC08062 analog to digital
; converter is disabled, the interrupt flag is cleared, and
; additional interrupts are enabled.
;Notes: Register LATD, CMCON, TRISD, PORTC, PORTE, and PORTB are special
; function registers that is accessed through the access bank.
;References:PIC18FXX8 Data Sheet pages 102, 249, 100, 104, 96, 79, and 47.

post_conf_acq
;ensure that microcontroller port D is in high-impedence input mode ----
 CLRF LATD,0 ;clear output data latch
 MOVLW b'00000111' ;disable all comparator
 MOVWF CMCON,0 ; functions
 MOVLW b'11111111' ;PORT D I/O direct. template
 MOVWF TRISD,0 ;define PORT D I/O directions
;configure memory chip 0 for data nonwrite -----------------------------
 BSF PORTC,CE0,0 ;memory chip 0 is disabled
 BSF PORTC,OE0,0 ;mem data lines set for input
 BSF PORTC,WE0,0 ;writing to mem 0 is disabled
;configure memory chip 1 for data nonwrite -----------------------------
 BSF PORTE,CE1,0 ;memory chip 1 is disabled
 BSF PORTE,OE1,0 ;mem data lines set for input
 BSF PORTE,WE1,0 ;writing to mem 1 is disabled
;configure ADC08062 analog to digital converter ------------------------
 BSF PORTB,CS,0 ;disable anal to dig convert
;clear INT0 interrupt flag and enable additional interrupts ------------
 BCF INTCON,INT0IF,0 ;clear interrupt flag
 BSF INTCON,INT0IE,0 ;set int enable flag

 RETURN
;__
;Name: time_delay

 46

;Purpose: To generate a time delay with a duration that is determined by
; the values of the three passed arguments.
;Passed: Three 1-byte values are passed to this routine.
;Returned: No variables are returned from this routine.
;Actions: The passed arguments are recovered from the software stack and
; incremented by one. These three arguments are then used as the
; counters for three nested loops with the inner loop counter
; repeatedly being decremented to zero before the middle loop
; counter is decremented to zero before the outer loop is
; decremented. The time delay is terminated when all three counters
; reach a value of zero.
;Notes: When this assembly routine is called by the C program the three
; arguments in the argument list are pushed onto the top of the
; software stack in right-to-left order and the stack pointer is
; incremented to the next available empty stack location. Thus,
; after the function call the left-most argument in the argument
; list is on the top of the software stack and the stack pointer
; is pointing to the adjacent empty stack position. The left-most
; arguement value is recovered by accessing the memory location of
; the current stack pointer decremented by one. This is
; accomplished by first setting the working register WREG to a
; value of minus one (0xFF) and using the indirect addressing
; operation PLUSW1 that uses WREG as an offset to the current stack
; pointer. The second argument is recovered by setting WREG to
; minus two (0xFE) and again using the indirect addressing
; operation. The third argument is recovered by setting WREG to
; minus three (0xFD) and again using the indirect addressing
; operation. Each counter is decremented before it is tested for a
; zero value. Therefore, each counter is incremented by one to
; yield minimum delay intervals for counter values of 0 and maximum
; delay intervals for counter values of 255. The duration of the
; generated time delay is:
;
; delay = (19 + 4*D1 + 1027*D2 + 262915*D3) machine cycles
;
; where D1, D2, and D3 are the argument values as passed to the
; function before being incremented and the period of a machine
; cycle is four times the period of the microcontroller oscillator.
; "delay_cnt_1", "delay_cnt_2", and "delay_cnt-3" are 1-byte
; variable locations that have been reserved in access bank RAM at
; the beginning of this assembly code file.
;References:PIC18FXX8 Data Sheet page 55. MPLAB C18 C Compiler User's Guide
; pages 38 - 45.
time_delay
 MOVLW h'FF' ;load -1 into WREG
 MOVFF PLUSW1,delay_cnt_3 ;move FSR1 offset by WREG
 INCF delay_cnt_1,1,0 ;incr value of delay_cnt_3
 MOVLW h'FE' ;load -2 into WREG
 MOVFF PLUSW1,delay_cnt_2 ;move FSR1 offset by WREG
 INCF delay_cnt_2,1,0 ;incr value of delay_cnt_2
 MOVLW h'FD' ;load -3 into WREG
 MOVFF PLUSW1,delay_cnt_1 ;move FSR1 offset by WREG
 INCF delay_cnt_3,1,0 ;incr value of delay_cnt_1
delay_loop NOP
 DECFSZ delay_cnt_1,1,0 ;decrement delay_cnt_1
 GOTO delay_loop ; until zero
 DECFSZ delay_cnt_2,1,0 ;decrement delay_cnt_2

 47

 GOTO delay_loop ; until zero
 DECFSZ delay_cnt_3,1,0 ;decrement delay_cnt_3
 GOTO delay_loop ; until zero

 RETURN
;__
;Name: turn_led_on
;Purpose: To turn on the annuciator light emitting diode.
;Passed: No variables are passed to this routine.
;Returned: No variables are returned from this routine.
;Actions: The bit that powers the LED annunciator is set high.
;Notes: It is assumed that the anode of the LED is connected to output
; bit 0 of port C and the cathode of the LED is connected to
; ground. This bit has been equated in the included file
; TK_PIC18F458_DL.inc to "LED". Register PORTC is a special
; function registers that is accessed through the access bank.
;References:PIC18FXX8 Data Sheet pages 100 and 47.

turn_led_on
 BSF PORTC,LED,0 ;turn on led annunciator

 RETURN
;__
;Name: turn_led_off
;Purpose: To turn off the annuciator light emitting diode.
;Passed: No variables are passed to this routine.
;Returned: No variables are returned from this routine.
;Actions: The bit that powers the LED annunciator is cleared low.
;Notes: It is assumed that the anode of the LED is connected to output
; bit 0 of port C and the cathode of the LED is connected to
; ground. This bit has been equated in the included file
; TK_PIC18F458_DL.inc to "LED". Register PORTC is a special
; function register that is accessed through the access bank.
;References:PIC18FXX8 Data Sheet pages 100 and 47.

turn_led_off
 BCF PORTC,LED,0 ;turn on led annunciator

 RETURN
;__
;Name: clear_int_flag
;Purpose: To clear the INT0 interrupt flag.
;Passed: No variables are passed to this routine.
;Returned: No variables are returned from this routine.
;Actions: Bit INT0IF in register INTCON is cleared.
;Notes: Register INTCON is a special function register that is accessed
; through the access bank.
;References:PIC18FXX8 Data Sheet pages 92 and 47.

clear_int_flag
 BCF INTCON,INT0IF,0 ;clear interrupt flag
 BSF INTCON,INT0IE,0 ;set int enable flag

 RETURN
;__
;Name: acquire_data
;Purpose: To acquire all data.

 48

;Passed: No variables are passed to this routine.
;Returned: No variables are returned from this routine.
;Actions:
;Notes: Register INTCON is a special function register that is accessed
; through the access bank.
;References:PIC18FXX8 Data Sheet pages 92 and 47.

acquire_data
;FILLING THE FIRST HALF OF MEMORY WITH DATA ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
;the following code segment acquires one data value from channel 0 ----------
data_loop_1 BCF PORTB,A0,0 ;select VIN1 data for conver
 BCF PORTB,WR,0 ;pulse write line low to
 BSF PORTB,WR,0 ; initiate conversion
 INCF PORTA,1,0 ;increment port A (LSBs)
 NOP ;time delay to allow the
 NOP ; conversion to proceed
 ;
 BCF PORTB,RD,0 ;output conv value on bus
 BCF PORTC,CE0,0 ;capture conversion data in
 BSF PORTC,CE0,0 ; memory chip 0
 BSF PORTB,RD,0 ;remove conv data from bus
;the following code segment acquires one data value from channel 1 ----------
 BSF PORTB,A0,0 ;select VIN2 data for conver
 BCF PORTB,WR,0 ;pulse write line low to
 BSF PORTB,WR,0 ; initiate conversion
 NOP ;time delay to allow the
 NOP ; conversion to proceed
 NOP ;
 BCF PORTB,RD,0 ;output conv value on bus
 BCF PORTE,CE1,0 ;capture conversion data in
 BSF PORTE,CE1,0 ; memory chip 1
 BSF PORTB,RD,0 ;remove conv data from bus

 BTFSS PORTC,AMSB,0 ;is first half of mem. full?
 GOTO data_loop_1 ;(NO) go to data_loop_1

;FILLING THE SECOND HALF OF MEMORY WITH DATA
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
;the following code segment acquires one data value from channel 0 ----------  
data_loop_2 BCF PORTB,A0,0  ;select VIN2 data for conver 
 BCF PORTB,WR,0  ;pulse write line low to 
 BSF PORTB,WR,0  ; initiate conversion 
 INCF PORTA,1,0  ;increment port A (LSBs)  
 NOP   ;time delay to allow the 
 NOP   ; conversion to proceed  
 ; 
 BCF PORTB,RD,0  ;output conv value on bus 
 BCF PORTC,CE0,0  ;capture conversion data in 
 BSF PORTC,CE0,0  ; memory chip 0 
 BSF PORTB,RD,0  ;remove conv data from bus 
;the following code segment acquires one data value from channel 1 ----------  
 BSF PORTB,A0,0  ;select VIN2 data for conver 
 BCF PORTB,WR,0  ;pulse write line low to 
 BSF PORTB,WR,0  ; initiate conversion 
 NOP   ;time delay to allow the 
 NOP   ; conversion to proceed



 49

 NOP   ; 
 BCF PORTB,RD,0  ;output conv value on bus 
 BCF PORTE,CE1,0  ;capture conversion data in 
 BSF PORTE,CE1,0  ; memory chip 1 
 BSF PORTB,RD,0  ;remove conv data from bus 
  
 
 BTFSC PORTC,AMSB,0 ;is first half of mem. full? 
 GOTO data_loop_2  ;(NO) go to data_loop_1  
  
 RETURN 
;____________________________________________________________________________ 
;Name:  test_interrupt 
;Purpose:  To return a return a non-zero value if the RB0/INT0 line is 
; pulled high. 
;Passed: No variables are passed to this routine. 
;Returned: One 8-bit value is returned from this routine. 
;Actions: The contents of the serial port receive register, RCREC, are 
; moved to the working register, WREG, and the serial port receive 
; interrupt flag bit, RCIF, of the peripheral interrupt request 
; register number one, PIR1, is cleared. 
;Notes:     8-bit arguments are transferred from assembly functions to C 
; programs in the WREG register. Registers PIR1 and RCREG are 
; special function registers that are accessed through the access  
; bank. 
;References:PIC18FXX8 Data Sheet pages 191, 82 and 47. MPLAB C18 C Compiler  
; User's Guide pages 37. 
test_interrupt     
 BTFSS PORTB,0,0  ;is RB0/INT0 set? 
 GOTO rb0_not_set  ;(NO) go to rb0_not_set 
 SETF WREG,0  ;set W 
 RETURN   ;return a non-zero value 
rb0_not_set CLRF WREG,0  ;clear W  
 RETURN   ;return a zero value 
         
 end   ;end of default code segment  
 



 50

INTENTIONALLY LEFT BLANK. 



 51

 

 

 

 

 

 

 

 

 

 

 

 

Appendix C.  Listing of Ballistic Data Logger Microcontroller 
Assembler Header File 

                                                 
 This appendix appears in its original form, without editorial change. 



 52

 
;Template file for Microchip PIC18F458 microcontroller used in IR Data Logger 
;Version 1.0 
;April 2006 
 
;Define Processor ***************************************************** 
 
 processor 18F458 
  
;Define Special Function Register locations ***************************** 
 
TOSU equ h'FFF'  ;Top Of Stack Upper pg 38 
TOSH equ h'FFE'  ;Top Of Stack High pg 38 
TOSL equ h'FFD'  ;Top Of Stack Low pg 38 
 
STKPTR equ h'FFC'  ;STacK PoinTeR pg 38 
STKFUL equ h'7'  ;stack full flag, 1=full 
STKUNF equ h'6'  ;stack underflow, 1=underflow 
   
PCLATU equ h'FFB'  ;Prog Count Latch Upper pg 40 
PCLATH equ h'FFA'  ;Prog Count Latch High pg 40 
PCL equ h'FF9'  ;Program Counter Low pg 40 
TBLPTRU equ h'FF8'  ;TaBLe PoinTeR Upper pg 65 
TBLPTRH equ h'FF7'  ;TaBLe PoinTeR High pg 65 
TBLPTRL equ h'FF6'  ;TaBLe PoinTeR Low pg 65 
TABLAT equ h'FF5'  ;TABle LATch pg 65 
PRODH equ h'FF4'  ;PRODuct High pg 75 
PRODL equ h'FF3'  ;PRODuct Low pg 75 
 
INTCON equ h'FF2'  ;Interrupt Config pg 79 
GIE_GIEH equ h'7'  ;global int enable/high enab 
PEIE_GIEL equ h'6'  ;peri int en/glob in enab low 
TMR0IE equ h'5'  ;timer 0 overflow inter enab 
INT0IE equ h'4'  ;INT0 external interrupt enab 
RBIE equ h'3'  ;port B change interrupt enab 
TMR0IF equ h'2'  ;timer 0 overflow inter flag 
INT0IF equ h'1'  ;INT0 external interrupt flag 
RBIF equ h'0'  ;port B change interrupt flag 
   
INTCON2 equ h'FF1'  ;Interrupt Config 2 pg 80 
RBPU_ equ h'7'  ;port B pull-ups enable, 0=en 
INTEDG0 equ h'6'  ;ext interrupt 0 edge select 
INTEDG1 equ h'5'  ;ext enterrupt 1 edge select 
TMR0IP equ h'2'  ;timer 0 overflow int prior. 
RBIP equ h'0'  ;port B change inter priority 
   
INTCON3 equ h'FF0'  ;Interrupt Config 3 pg 81 
INT2IP equ h'7'  ;INT2 external inter priority 
INT1IP equ h'6'  ;INT1 external inter priority 
INT2IE equ h'4'  ;INT2 external inter enable 
INT1IE equ h'3'  ;INT1 external inter enable 
INT2IF equ h'1'  ;INT2 external inter flag 
INT1IF equ h'0'  ;INT1 external inter flag



 53

   
INDF0 equ h'FEF'  ;INDirect File 0 pg 55 
POSTINC0 equ h'FEE'  ;POST INCrement 0 pg 55 
POSTDEC0 equ h'FED'  ;POST DECrement 0 pg 55 
PREINC0 equ h'FEC'  ;PRE INCrement 0 pg 55 
PLUSW0 equ h'FEB'  ;PLUS Wreg 0 pg 55 
FSR0H equ h'FEA'  ;File Select Reg High 0 pg 55 
FSR0L equ h'FE9'  ;File Select Reg Low 0 pg 55 
WREG equ h'FE8'  ;Working REGister  
INDF1 equ h'FE7'  ;INDirect File 1 pg 55 
POSTINC1 equ h'FE6'  ;POST INCrement 1 pg 55 
POSTDEC1 equ h'FE5'  ;POST DECrement 1 pg 55 
PREINC1 equ h'FE4'  ;PRE INCrement 1 pg 55 
PLUSW1 equ h'FE3'  ;PLUS Wreg 1 pg 55 
FSR1H equ h'FE2'  ;File Select Reg High 1 pg 55 
FSR1L equ h'FE1'  ;File Select Reg Low 1 pg 55 
BSR equ h'FE0'  ;Bank Select Register pg 54 
INDF2 equ h'FDF'  ;INDirect File 2 pg 55 
POSTINC2 equ h'FDE'  ;POST INCrement 2 pg 55 
POSTDEC2 equ h'FDD'  ;POST DECrement 2 pg 55 
PREINC2 equ h'FDC'  ;PRE INCrement 2 pg 55 
PLUSW2 equ h'FDB'  ;PLUS Wreg 2 pg 55 
FSR2H equ h'FDA'  ;File Select Reg High 2 pg 55 
FSR2L equ h'FD9'  ;File Select Reg Low 2 pg 55 
 
STATUS equ h'FD8'  ;arithmetic STATUS reg pg 57 
N equ h'4'  ;negative bit 
OV equ h'3'  ;overflow bit 
Z equ h'2'  ;zero bit 
DC equ h'1'  ;digit carry/borrow bit 
C equ h'0'  ;carry/borrow bit 
   
TMR0H equ h'FD7'  ;TiMeR 0 High          pg 111 
TMR0L equ h'FD6'  ;TiMeR 0 Low           pg 111 
 
T0CON equ h'FD5'  ;Timer 0 CONfiguration pg 109 
TMR0ON equ h'7'  ;timer 0 on/off control bit 
T08BIT equ h'6'  ;timer 0 8/16 bit control bit 
T0CS equ h'5'  ;timer 0 clock source bit 
T0SE equ h'4'  ;timer 0 edge select bit 
PSA equ h'3'  ;timer 0 prescalar desel bit 
T0PS2 equ h'2'  ;timer 0 prescal scale bit 2 
T0PS1 equ h'1'  ;timer 0 prescal scale bit 1 
T0PS0 equ h'0'  ;timer 0 prescal scale bit 0 
   
OSCCON equ h'FD3'  ;OSCillator CONfig pg 20 
SCS equ h'0'  ;system clock switch bit 
   
LVDCON equ h'FD2'  ;Low Volt Dett CONfig  pg 261 
IRVST equ h'5'  ;low voltage interrupt enable 
LVDEN equ h'4'  ;low voltage device enable 
LVDL3 equ h'3'  ;low volt detect level bit 3 
LVDL2 equ h'2'  ;low volt detect level bit 2 
LVDL1 equ h'1'  ;low volt detect level bit 1 
LVDL0 equ h'0'  ;low volt detect level bit 0 
   
WDTCON equ h'FD1'  ;Watch Dog Time CONfig pg 272



 54

SWDTEN equ h'0'  ;software controlled WDT enab 
   
RCON equ h'FD0'  ;Reset CONfiguration pg 58 
IPEN equ h'7'  ;interrupt prior. enable bit 
RI_ equ h'4'  ;reset instruction flag 
TO_ equ h'3'  ;watch dog time out flag 
PD_ equ h'2'  ;power down detection flag 
POR_ equ h'1'  ;power on reset status bit 
BOR_ equ h'0'  ;brown out reset status bit 
   
TMR1H equ h'FCF'  ;TiMeR 1 High          pg 113 
TMR1L equ h'FCE'  ;TiMeR 1 Low           pg 113 
 
T1CON equ h'FCD'  ;Timer 1 CONfig        pg 113 
RD16 equ h'7'  ;16 bit read/write mode enab 
T1CKPS1 equ h'5'  ;prescalar value bit 1 
T1CKPS0 equ h'4'  ;prescalar value 
T1OSCEN equ h'3'  ;timer 1 oscillator enab bit 
T1SYNC_ equ h'2'  ;timer 1 ext clock synch bit 
TMR1CS equ h'1'  ;timer 1 clock source select 
TMR1ON equ h'0'  ;timer 1 on bit 
   
TMR2 equ h'FCC'  ;TiMeR 2            pg 117 
PR2 equ h'FCB'  ;Period Reg timer 2    pg 118 
 
T2CON equ h'FCA'  ;Timer 2 CONfiguration pg 117 
TOUTPS3 equ h'6'  ;timer 2 post scal sel bit 3 
TOUTPS2 equ h'5'  ;timer 2 post scal sel bit 2 
TOUTPS1 equ h'4'  ;timer 2 post scal sel bit 1 
TOUTPS0 equ h'3'  ;timer 2 post scal sel bit 0 
TMR2ON equ h'2'  ;timer 2 on bit 
T2CKPS1 equ h'1'  ;timer 2 clock prescale bit 1 
T2CKPS0 equ h'0'  ;timer 2 clock prescale bit 0 
   
ADRESH equ h'FC4'  ;Anal/Dig Result High  pg 243  
ADRESL equ h'FC3'  ;Anal/Dig Result Low   pg 243 
ADCON0 equ h'FC2'  ;Anal/Dig Config 0     pg 241 
ADCON1 equ h'FC1'  ;Anal/Dig Config 1     pg 242 
CCPR1H equ h'FBF'  ;Capt/Comp/Pwm R 1 Hi  pg 127 
CCPR1L equ h'FBE'  ;Capt/Comp/Pwm R 1 Low pg 127 
CCP1CON equ h'FBD'  ;Capt/Comp/Pwm CONf 1  pg 123 
ECCPR1H equ h'FBC'  ;Enhanced CCP Reg 1 Hi pg 133 
ECCPR1L equ h'FBB'  ;Enhanced CCP Reg 1 Lo pg 133 
ECCP1CON equ h'FBA'  ;Enhanced CCP 1 Config pg 131 
ECCP1DEL equ h'FB7'  ;Enhanced CCP 1 Delay  pg 140 
ECCPAS equ h'FB6'  ;Enh CCP Auto Shutdown pg 142 
CVRCON equ h'FB5'  ;Comparator Volt Ref   pg 255 
CMCON equ h'FB4'  ;Comparator Mod Config pg 249 
TMR3H equ h'FB3'  ;TiMeR 3 High          pg 119 
TMR3L equ h'FB2'  ;TiMeR 3 Low           pg 119 
T3CON equ h'FB1'  ;Timer 3 CONfiguration pg 119 
SPBRG equ h'FAF'  ;Ser Port Baud Rate Gn pg 185 
RCREG equ h'FAE'  ;ReCeive Reg Ser Port  pg 191 
TXREG equ h'FAD'  ;Transmit Reg Ser Port pg 189 
 
TXSTA equ h'FAC'  ;Transmit STAtus reg   pg 183 
TRMT equ h'1'  ;TSR status bit



 55

RCSTA equ h'FAB'  ;ReCeive STAtus reg    pg 184 
EEADR equ h'FA9'  ;Elec Erase Address pg 59 
EEDATA equ h'FA8'  ;Elec Erase Data pg 59 
EECON2 equ h'FA7'  ;Elec Erase Config 2 pg 59 
EECON1 equ h'FA6'  ;Elec Erase Config 1 pg 60 
IPR3 equ h'FA5'  ;Interrupt Prior Reg 3 pg 90 
PIR3 equ h'FA4'  ;Peripheral Int Reg 3 pg 84 
PIE3 equ h'FA3'  ;Periph Int Enable 3 pg 87 
IPR2 equ h'FA2'  ;Interrupt Prior Reg 2 pg 89 
PIR2 equ h'FA1'  ;Peripheral Int Reg 2 pg 83 
PIE2 equ h'FA0'  ;Periph Int Enable 2 pg 86 
 
IPR1 equ h'F9F'  ;Interrupt Prior Reg 1 pg 88 
PSPIP equ h'7'  ;Par slave port interr prior 
ADIP equ h'6'  ;ADC interrupt priority 
RCIP equ h'5'  ;USART rx interrupt priority 
TXIP equ h'4'  ;USART tx interrupt priority 
SSPIP equ h'3'  ;Master synch ser port prior 
CCP1IP equ h'2'  ;CCP1 interrupt priority 
TMR2IP equ h'1'  ;TMR2 to PR2 match priority 
TMR1IP equ h'0'  ;TMR1 overflow inter prior 
 
PIR1 equ h'F9E'  ;Peripheral Int Reg 1   pg 82 
RCIF equ h'5'  ;USART rec interr flag bit 
TXIF equ h'4'  ;USART trans interr flag bit 
TMR2IF equ h'1'  ;T2 to PR2 match int flag bit 
 
PIE1 equ h'F9D'  ;Periph Int Enable 1 pg 85 
RCIE equ h'5'  ;USART rx interrupt enable 
TMR2IE equ h'1'  ;TMR2 to PR2 match int enable 
 
TRISE equ h'F96'  ;TRIState Port E       pg 104 
TRISD equ h'F95'  ;TRIState Port D       pg 102 
TRISC equ h'F94'  ;TRIState Port C       pg 100 
TRISB equ h'F93'  ;TRIState Port B       pg 96 
TRISA equ h'F92'  ;TRIState Port A       pg 93 
LATE equ h'F8D'  ;LATch Port E          pg 104 
LATD equ h'F8C'  ;LATch Port D          pg 102 
LATC equ h'F8B'  ;LATch Port C          pg 100 
LATB equ h'F8A'  ;LATch Port B          pg 96 
LATA equ h'F89'  ;LATch Port A          pg 93 
 
PORTE equ h'F84'  ;PORT E            pg 104 
CE1 equ h'0'  ;chip enab line for mem IC 1 
WE1 equ h'1'  ;write enab line for mem IC 1 
OE1 equ h'2'  ;output enab line mem IC 1 
 
 
PORTD equ h'F83'  ;PORT D            pg 102 
 
PORTC equ h'F82'  ;PORT C            pg 100 
LED equ h'0'  ;light emitting diode power 
AMSB equ h'1'  ;address most significant bit 
CE0 equ h'2'  ;chip enab line for mem IC 0 
WE0 equ h'3'  ;write enab line for mem IC 0 
OE0 equ h'4'  ;output enab line mem IC 0



 56

MR equ h'5'  ;74HC4040 master reset line 
TX_BIT equ h'6'  ;serial transmition bit 
RX_BIT equ h'7'  ;serial reception bit 
 
PORTB equ h'F81'  ;PORT B  pg 96 
A0 equ h'1'  ;ADC08062 channel select bit 
CS equ h'2'  ;ADC08062 chip select  
RD equ h'3'  ;ADC08062 read line 
WR equ h'4'  ;ADC08062 write line 
 
PORTA equ h'F80'  ;PORT A  pg 93 
 
;Set Processor Configuration Bits ***************************************** 
 
 __config h'300001',b'00100101' ;oscillator configuration 
    ;pages 266, 19, 20 
 __config h'300002',b'0000100' ;brown-out and power-up conf 
    ;pages 266, 26 
 __config h'300003',b'00001110' ;watch dog timer config 
    ;pages 267, 272 
 __config h'300006',b'00000001' ;debug,low-V ICSP,stack conf 
    ;pages 267, 279 
 __config h'300008',b'00001111' ;code protection config 
    ;page 268 
 __config h'300009',b'11000000' ;EEPROM, boot code prot conf 
    ;page 268 
 __config h'30000A',b'00001111' ;write protection config 
    ;page 269 
 __config h'30000B',b'11100000' ;EE, boot, con reg 
    ;page 269 
 __config h'30000C',b'00001111' ;table read protection 
    ;page 270 
 __config h'30000D',b'01000000' ;boot block table read prot 
    ;page 270 



 57

 

 

 

 

 

 

 

 

 

 

 

 

Appendix D.  Ballistic Data Logger Microcontroller Linker 
Script File 

                                                 
 This appendix appears in its original form, without editorial change. 



 58

 
// $Id: 18f458i.lkr,v 1.3 2003/03/13 05:02:23 sealep Exp $ 
// File: 18f458i.lkr 
// Sample linker script for the PIC18F458 processor 
 
// Modified for Ballistic Data Logger 
 
// File:  TK_18F458_DL.lkr 
// Author:  Tom Kottke 
// Date:  01 April 2006 
 
// Library and object files which do not have a path are searched using the  
// current directory 
LIBPATH . 
 
// MPLAB C18 start-up file c018i.o is specified for linking 
FILES c018i.o 
// MPLAB C18 standard library file is specified for linking 
FILES clib.lib 
// MPLAB C18 processor-specific library file is specified for linking 
FILES p18f458.lib 
 
// Definition of reset vector ROM memory region which is protected 
CODEPAGE   NAME=reset_vector START=0x0000 END=0x0007 PROTECTED 
// Definition of high priority interrupt vector ROM memory region, protected 
CODEPAGE   NAME=hi_int_vector START=0x0008 END=0x0017 PROTECTED 
// Definition of low priority interrupt vector ROM memory region, protected 
CODEPAGE   NAME=lo_int_vector START=0x0018 END=0x00FF PROTECTED 
// Definition of main ROM memory region where compiled code can be located 
CODEPAGE   NAME=main_vector START=0x0100 END=0x7DBF 
// Definition of resource memory region used by ICD2 in debug mode, protected 
CODEPAGE   NAME=debug      START=0x7DC0         END=0x7FFF         PROTECTED 
// Definition of microcontroller ID location ROM memory region, protected 
CODEPAGE   NAME=idlocs     START=0x200000       END=0x200007       PROTECTED 
// Definition of configuration register ROM memory region which is protected 
CODEPAGE   NAME=config     START=0x300000       END=0x30000D       PROTECTED 
//Definition of device ID location ROM memory region which is protected 
CODEPAGE   NAME=devid      START=0x3FFFFE       END=0x3FFFFF       PROTECTED 
 
//Definition of RAM memory regions 
ACCESSBANK NAME=accessram  START=0x0            END=0x5F 
DATABANK   NAME=gpr0       START=0x60           END=0xFF 
DATABANK   NAME=gpr1       START=0x100          END=0x1FF 
DATABANK   NAME=gpr2       START=0x200          END=0x2FF 
DATABANK   NAME=gpr3       START=0x300          END=0x3FF         
DATABANK   NAME=gpr4       START=0x400          END=0x4FF          
DATABANK   NAME=gpr5       START=0x500          END=0x5F3 
DATABANK   NAME=dbgspr     START=0x5F4          END=0x5FF          PROTECTED 
DATABANK   NAME=bankedsfr  START=0xF00          END=0xF5F          PROTECTED 
ACCESSBANK NAME=accesssfr  START=0xF60          END=0xFFF          PROTECTED 
 
//Definition of logical sections 
SECTION    NAME=ACCESSRAM       RAM=accessram



 59

SECTION    NAME=hi_int_vector   ROM=hi_int_vector 
SECTION    NAME=main_vector     ROM=main_vector 
SECTION    NAME=CONFIG          ROM=config 
 
//Definition of software stack memory region 
STACK SIZE=0xF3 RAM=gpr5 



 
 
NO. OF  
COPIES ORGANIZATION  
 

 60

 1 DEFENSE TECHNICAL 
 (PDF INFORMATION CTR 
 ONLY) DTIC OCA 
  8725 JOHN J KINGMAN RD 
  STE 0944 
  FORT BELVOIR VA 22060-6218 
 
 1 US ARMY RSRCH DEV & 
  ENGRG CMD 
  SYSTEMS OF SYSTEMS 
  INTEGRATION 
  AMSRD SS T 
  6000 6TH ST STE 100 
  FORT BELVOIR VA  22060-5608 
 
 1 INST FOR ADVNCD TCHNLGY 
  THE UNIV OF TEXAS  
  AT AUSTIN 
  3925 W BRAKER LN 
  AUSTIN TX 78759-5316 
 
 1 DIRECTOR 
  US ARMY RESEARCH LAB 
  IMNE ALC IMS 
  2800 POWDER MILL RD 
  ADELPHI MD 20783-1197 
 
 3 DIRECTOR 
  US ARMY RESEARCH LAB 
  AMSRD ARL CI OK TL 
  2800 POWDER MILL RD 
  ADELPHI MD 20783-1197 
 

 
 

ABERDEEN PROVING GROUND 
 
 1 DIR USARL 
  AMSRD ARL CI OK TP (BLDG 4600) 
 
 



 
 
NO. OF NO. OF 
COPIES ORGANIZATION COPIES ORGANIZATION 
 

 61

 42 DIR USARL 
  AMSRD ARL WM BA 
   D LYON 
  AMSRD ARL WM BC 
   I CELMINS 
   P PLOSTINS 
   T PUCKETT 
  AMSRD ARL WM BD 
   B FORCH 
  AMSRD ARL WM BF 
   D WILKERSON 
  AMSRD ARL WM MA 
   M VANLANDINGHAM 
  AMSRD ARL WM MB 
   L BURTON 
  AMSRD ARL WM MC 
   M MAHER 
  AMSRD ARL WM MD 
   E CHIN 
  AMSRD ARL WM TA 
   J BALL 
   T BARNHILL 
   M BURKINS 
   J RAYMOND 
   D SCHALL 
   S SCHOENFELD 
   R STRICKLAND 
  AMSRD ARL WM TB 
   T ADKINS 
   D PILARSKI 
   R SKAGGS 
  AMSRD ARL WM TC 
   R COATES 
   E DEAL 
   J KOONTZ 
   D WEEKS 
  AMSRD ARL WM TD 
   T BJERKE 
  AMSRD ARL WM TE 
   P BERNING 
   J CAMERON 
   C HUMMER 
   S KENNEDY 
   T KOTTKE 
   M MCNEIR 
   K MAHAN 
   A NIILER 
   J POWELL 
   B RINGERS 
   G THOMSON 

  CSTE DTC AT TT I 
   G BARTLETT 
   K DICK 
   G HETTCHEN 
   J PHILISTINE 
  CSTE DTC AT SL 
   D VALZ 
  CSTE DTC AT SL B 
   M CLARK 
 



 

 62

INTENTIONALLY LEFT BLANK. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


